
Development of the
Domain Name System

Paul V. Mockapetris, Kevin J. Dunlap

Sigcomm Symposium, August, 1988

Presented by Steven Smith – CSC 7970

1

Outline

 Introduction – HOSTS.TXT and Reason to Move To DNS

 DNS Design

 Implementation Status at Writing

 Surprises, Successes, and Shortcomings

 Conclusions and Future Work

 Critique and Issues

 Take Aways

2

Introduction - Background

 DNS – Domain Name System

 First designed in 1983.

 Combination of Hierarchies, Caching, and Datagram Access.

 Replacement for HOSTS.TXT mechanism

 HOSTS.TXT

 Mapped hosts to names and addresses

 Transferred to all hosts in the Internet via file transfers.

3

Introduction - Reasoning

 HOSTS.TXT Issues

 Problem – becoming too large leading to high distribution costs,
and centralized management did not fit with the Internet’s
distributed nature.

 Due to growth and evolution of community from ARPANET to the
Internet.

 Rapid changes and large size led to high costs.

 Wanted to allow for local control of network names and
addresses.

4

Introduction – Existing Distributed
Naming Systems

 DARPA IEN116

 Too limited and host specific without enough benefits.

 XEROX Grapevine

 Sophisticated

 Used heavy replication with light caching.

 Fixed number of hierarchy levels.

 Would require support of its protocol.

 Did not fit the Internet’s distributed nature.

5

DNS Design

 Hierarchical name space with typed data at nodes.

 Database control delegated in hierarchical fashion.

 Intent for data types – Should be indefinitely extensible as new
apps are added.

6

Root

.com

.google.com

.edu

.msn.com .tntech.edu .utk.edu

DNS Design – Base Assumptions

 Provide at least the same info as HOSTS.TXT.

 Allow the database to be maintained in a distributed manner.

 Have no obvious size limits for names, components, data, etc.

 Interoperate across the Internet and as many other environments as possible.

 Provide tolerable performance.

 Initial design assumed the necessity of striking a balance between a lean
service and completely general distributed DB.

 Lean service – Desirable for more implementation efforts and early availability.

 General design – Reduce the cost of introduction, provide greater functionality, and
increase the places DNS would be used.

7

DNS Design - Constraints

 Cost could only be justified if it provided extensible services.

 Should be independent of network topology.

 Capable of encapsulating other name spaces.

 To be universally acceptable, should avoid trying to force a single OS,
architecture, or organizational style on users.

 Avoid any constraints due to outside influences.

 Permit as many different implementation structures as possible.

8

DNS Architecture- Active Components

 Name Servers – Repositories that answer queries with their possessed information.

 Resolvers – Interfaces to client applications, embody algorithms for finding name
servers with the needed info.

 May be combined into one application or separated to suit needs.

 Often useful to centralize resolver function in one or more name servers.

 Allows sharing the use of cached info.

 Allow less capable hosts to rely on the resolving services of these servers without
needing their own resolver.

9

DNS Design – Name Space

 Variable Depth Tree

 Each node has an associated label – up to 63 octets in size. Case Insensitive.

 Domain name of a node is the concatenation of all labels on the path from the
node to the root. Up to 256 total octets to aid implementation.

 Example: .scholar.google.com - Null(root)->.com->google.com->scholar.google.com

 Config files represent names as character strings separated by dots, but
applications are free to do otherwise.

 Example: Venera.Isi.Edu is a name with four labels – the null root is usually
omitted.

 Mailbox names typically encode the part before the @ in one label.

 Recommended to mirror the structure of the organization controlling the local
domain.

10

DNS Design – Attached Data

 Does not constrain data that can attach to a name.

 However, does specify some structures so replies to queries can be limited to relevant info.

 Data for each name is organized as a set of Resource Records (RRs).

 Each contain a well-known type and class field followed by app data.

 Multiple values of the same type are represented by separate RRs.

 Provided space efficiency to reduce max RR size.

 Types – Represent abstract resources or functions.

 Example: Host addresses.

 Class – Divides Database from type, and specifies protocol family.

 Example: DARPA Internet

11

DNS Design – Database Distribution

 Provides 2 major mechanisms for transferring data from a source to
destination.

 Zones – Sections of the global database controlled by a specific organization

 The organization is responsible for distributing copies to servers that make the
zones available to the wider Internet.

 Caching – Data acquired in response to a request can be locally stored for use with
future requests.

 Intent – Both mechanisms should be invisible to the user who will see a single DB
without boundaries.

12

DNS Design - Zones

 Zones are a complete description of a contiguous section of the total tree name
space, with some pointer info the other continguous zones.
 Can be a single node or whole tree, but typically a subtree.

 Data is typically maintained in a master file on the name server.

 Authoritative data is stored by the server itself rather than retrieved or cached.

 Organizations gain control of a zone of the name space by requesting a parent
organization delegate a subzone to them.
 The subzone consists of a single node. The organization can then build this out without

the original parent

 Organization must maintain zone data and provide redundant servers for the zone.

 Zone transfers require TCP for reliability.

 Goal – A parent organization should be able to have a domain name even if it lacks
the communication or host resources for supporting the DNS service.

13

DNS Design - Caching

 DNS resolvers cache responses for use by later queries.

 Controlled by TTL field in units of seconds. Set in each RR.

 Low TTL reduces periods of inconsistency while high TTL minimizes traffic load and
allows for periods of unavailability.

 Example: Recommended TTL value for host names is 2 days.

14

Implementation Status at Time of
Writing

 DNS in use throughout DARPA Internet.

 HOSTS.TXT still in use by older hosts, but DNS is recommended.

 At the time, Domain space partitioned into around 30 Top Level Domains
(TLDs).

 Example: .com, .edu.

 Currently, there are over 1,000 TLDs.

 SRI-NIC manages domains for all non-country TLDs and delegates subdomains to
organizations that wish to maintain their own name space.

15

Implementation Status at Time of
Writing – Root Servers

 Search algorithm for DNS allows a resolver to search downward from domains
it can access.

 Root server and TLDs supported by 7 redundant name servers.

 Typical traffic 1 query per second.

 Vast majority of queries are 4 types

 All info, host name to address, address to host, and mail info (MX).

 10-15% of all queries referred to servers for lower level domains.

 Berkeley University provided Unix Support for DNS with BIND.

 First organization to depend solely on DNS for host/address resolution.

16

Surprises

 Refinement of Semantics

 Initial assumption was the form and content of information was well understood.

 Did not pan out as even common concepts such as IP host addresses caused issues.

 Supporting multiple addresses for single hosts caused huge discussions about if
addresses should be ordered and how.

 Performance

 Worse than originally planned.

 Heavy load, network growth, slow speed links led to multiple queries from the
same sources, causing further delays.

 Difficulty in measuring performance due to being swamped by unrelated effects
such as gateway changes and DNS software releases.

 Caching had better performance than expected, exceeding HOSTS.txt due to
anticipating large database sizes.

17

Surprises

 Negative Caching

 DNS provides 2 negative responses to queries – Name does not exists, and name
exists but requested data does not.

 Examples: Misspelled name, Host type of mailbox that is not set.

 Happened much more often than expected.

 Up to 60% error rate on root servers.

 Caused by program using old-style host names or names from other mail services
such as UUCP.

 Recommendations to reduce these helped, but negative responses were still 25-
50%.

 Should have cached negative responses as well to improve performance.

18

Successes – Variable Depth Hierarchy

 Variability in tree depth.

 Growth of Workstation and Local Networks meant organizations were finding a
need to organize within their own networks.

 Vastly different organization sizes led to need for different depths needed in
the hierarchy.

 Made it possible to encapsulate any fixed level or variable level system.

 Example: UK’s name service NRS and DNS were able to mutually encapsulate
each other’s name space.

19

Successes – Organizational Structuring of
Names

 Naming structure’s independence from network, topology, etc.

 Very popular and prolific.

 However, TLD structure is controversial.

 Authors stat they could change this however as DNS is flexible enough to
accommodate almost any tree-based structural choice.

 Requires a consensus to be reached.

20

Successes – Datagram Access

 UDP Datagram used as main method of communication (outside of TCP-based
zone transfers).

 Maximum size of 512-bytes did not lead to issues and helped reduce resource
usage.

 Seemed to be essential due to poor performance of the Internet.

 Drawback

 Need development and refinement of retransmission strategies that are already
well developed for TCP.

 Lead to much unnecessary traffic caused by repeated queries.

21

Successes – Additional Section Processing
and Caching

 Additional Section Processing - Allows name servers to provide additional info
that fits in the datagram beyond the answer to a query.

 Allows the server to anticipate additional requests.

 Example: When a root server passes the name of a host, they will include its
address as it is assumed it is needed for use.

 Experiments show this was estimated to cut query traffic in half.

 Caching – essential to the poor performance of the Internet.

 Problem – DNS Admin strategies can make it less reliable or useful.

 Example: Admins assigning short TTLs to RR nodes that rarely change.

22

Successes – Mail Address Cooperation

 Agreement between representatives of different communities to use
organizationally structured domain names for mail addressing and routing.

 CSNET, BITNET, UUCP, and DARPA Internet among these.

 Provided a good opportunity to clean up mail addresses.

23

Shortcomings – Type and Class Growth

 Initially there was great demand to increase the size of type and class
specifiers to allow for many additions.

 Only 2 type and classes added over 5 years, and 2 types were dropped.

 Either demand was misunderstood or new types and classes were too difficult to
create.

 Problem – Almost all existing software regarded DNS types and classes as
compile-time restraints, which meant they must be recompiled to deal with
changes.

 Methodology and guidelines for adding these are needed, but the problem is
this involves the design of special name space sections, TTL selections, etc.

 Different members of the Internet have different views – No Consensus.

24

Shortcomings – Easy Upgrading of
Applications

 Conversion of network applications to use DNS was difficult.

 Problem – Needed to handle Transient failure, where a distributed naming system
would have periods where it cannot access certain info.

 Access to naming system also needed to be better integrated into Operating
Systems, so application designers did not have to add functionality themselves.

 Example: Adding access as the shell level.

25

Shortcomings – Distribution of Control vs.
Distribution of Expertise or Responsibility

 Distribution of authority does not distribute expertise.

 This means maintainers will fix things till they work, not till they work well.

 Leads to problems with consistency in name server design.

 System designers should try to compensate for this.

 Initial policy was to delegate a domain to any organization which filled out a form
listing its redundant servers and other requirements.

 Should have made them demonstrate their redundant servers had real data before
delegating the domain and assure they were on different networks to prevent a
Single Point of Failure.

 Examples in documentation were designed for narration, not for actual use.
Sample TTL values of 1 hour instead of the recommended days.

 Debugging of systems made difficult due to lack of the protocol providing a method
to retrieve version. 26

Conclusion

 Need for distributed functionality and new opportunities for future services
justify the creation of DNS.

 Modifications to HOSTS.TXT could have postponed a new system, but would
have still led to large issues.

 Considerations that would have improved DNS:

 The usefulness of negative response caching.

 More difficult to remove functions than add new ones due to the need for the
community to all convert to a new version of the service.

 Implementers will often lose interest once a level of performance they expect is
achieved.

 Distributed software should including a version number and parameters that are
easily viewed.

 Variations in the implementation structure is a good idea, but service variations
cause issues.

27

Directions for Future Work

 DNS in production so changes are difficult.

 Research in other naming systems could provide useful additions.

 Data description techniques from ISO could provide a better mechanism for
adding data types, while DNS infrastructure could speed ISO prototyping.

 Develoipng an approach to structure the total tasks into layers depending on
the situation could be valuable.

 Example: A system for managing file names on a local disk vs. host names.

 Technical and/or political solutions to the growing complexity of naming.

28

Critique

 Good background information provided

 Fairly thorough explanation of reasoning

 Not much information on how improvements would or could be actually done.

 Production system – Difficult to change as mentioned.

 Not much explanation of other Distributed Naming Systems.

 Security and Privacy not considered or addressed.

29

Potential Improvements

 Designing for Availability

 Initial designs were good for the beginning.

 Root servers could and did lead to some traffic issues.

 Much criticism at the time about root servers as well.

 Improving Performance

 Potential for better caching via distribution of most popular queries at regular
intervals to subdomains.

 Example: Google.com is one of the most queried sites, so distribute its
information regularly to subdomain resolvers.

30

Potential Improvements

 Authentication and Data Integrity – DNSSEC

 If a host points to a malicious name server, there is nothing in the initial design to
prevent them from getting bad data.

 Use of Digital Signatures (hashed result information encrypted with private keys)
with Public Key Infrastructure to verify the authenticity of result data.

 DNSSEC can result in leakage of zone information due to keys being assigned by
zone and NSEC responses.

 Example: Querying for b.google.com would return an NSEC response stating no domain
exists between a.google.com and z.google.com if they existed.

 RFC 4470 proposes listing no domain exists between two lexically close domains
that may not actually exist.

 Example: Querying for b.google.com would return an NSEC response stating no domain
exists between a.google.com and b.google.com

31

Potential Improvements

 Confidentiality

 No confidentiality options specified.

 Allows for network analysis attacks at DNS level.

 Could provide option for encryption of Queries and Responses

32

Potential Improvements

 Better Education and Discussion with Varied Members of the Community

 Many assumptions made about knowledge

 Not many specifications on best practices provided

 Example: Could have improved adoption of changes by specifying types and classes
not be hardcoded at compile time.

 Did not seem to consider many ways the Internet was already being used.

 Many times it is mentioned there was no consensus found – could have spent more
time trying to get a majority agreement on some features.

 Example: TLD and root servers.

33

Potential Improvements

 Better experimentation and testing

 Not much mention of how testing and initial trials were performed.

 Could potentially have tested longer and more thoroughly to address problems
before DNS was put into production.

 Distribute out to candidates first, receive feedback?

34

Takeaways

 DNS was a huge effort to replace an outdated system – HOSTS.TXT.

 Openness and variability worked great for the Distributed nature of the
Internet.

 Lack of direction, guidelines, and discussion with the community and admins
led to large issues such as problems with TTL times leading to poor caching
practices.

 Hard to account for all of the potential use cases.

 Availability was a much bigger concern than authentication or confidentiality.

 Overall, worked well. Most issues were caused by poor practices of end
users/administrators and unforeseen issues such as the amount of negative
responses that could have been cached to improve performance.

35

References

 Mockapetris, P., & Dunlap, K. J. (1988, August). Development of the domain
name system. In Symposium proceedings on Communications architectures
and protocols (pp. 123-133).

 R. Arends, R. Austein, M. Larson, D. Massey, & S. Rose. DNS Security
Introduction and Requirements. RFC 4033.
https://tools.ietf.org/html/rfc4033

 S. Weiler (2006, April). Minimally Covering NSEC Records and DNSSEC On-line
Signing. RFC 4470. https://tools.ietf.org/html/rfc4470

36

THANK YOU!

37

	Development of the Domain Name System
	Outline
	Introduction - Background
	Introduction - Reasoning
	Introduction – Existing Distributed Naming Systems
	DNS Design
	DNS Design – Base Assumptions
	DNS Design - Constraints
	DNS Architecture- Active Components
	DNS Design – Name Space
	DNS Design – Attached Data
	DNS Design – Database Distribution
	DNS Design - Zones
	DNS Design - Caching
	Implementation Status at Time of Writing
	Implementation Status at Time of Writing – Root Servers
	Surprises
	Surprises
	Successes – Variable Depth Hierarchy
	Successes – Organizational Structuring of Names
	Successes – Datagram Access
	Successes – Additional Section Processing and Caching
	Successes – Mail Address Cooperation
	Shortcomings – Type and Class Growth
	Shortcomings – Easy Upgrading of Applications
	Shortcomings – Distribution of Control vs. Distribution of Expertise or Responsibility
	Conclusion
	Directions for Future Work
	Critique
	Potential Improvements
	Potential Improvements
	Potential Improvements
	Potential Improvements
	Potential Improvements
	Takeaways
	References
	Slide Number 37

