
Development of the
Domain Name System

Paul V. Mockapetris, Kevin J. Dunlap

Sigcomm Symposium, August, 1988

Presented by Steven Smith – CSC 7970

1

Outline

 Introduction – HOSTS.TXT and Reason to Move To DNS

 DNS Design

 Implementation Status at Writing

 Surprises, Successes, and Shortcomings

 Conclusions and Future Work

 Critique and Issues

 Take Aways

2

Introduction - Background

 DNS – Domain Name System

 First designed in 1983.

 Combination of Hierarchies, Caching, and Datagram Access.

 Replacement for HOSTS.TXT mechanism

 HOSTS.TXT

 Mapped hosts to names and addresses

 Transferred to all hosts in the Internet via file transfers.

3

Introduction - Reasoning

 HOSTS.TXT Issues

 Problem – becoming too large leading to high distribution costs,
and centralized management did not fit with the Internet’s
distributed nature.

 Due to growth and evolution of community from ARPANET to the
Internet.

 Rapid changes and large size led to high costs.

 Wanted to allow for local control of network names and
addresses.

4

Introduction – Existing Distributed
Naming Systems

 DARPA IEN116

 Too limited and host specific without enough benefits.

 XEROX Grapevine

 Sophisticated

 Used heavy replication with light caching.

 Fixed number of hierarchy levels.

 Would require support of its protocol.

 Did not fit the Internet’s distributed nature.

5

DNS Design

 Hierarchical name space with typed data at nodes.

 Database control delegated in hierarchical fashion.

 Intent for data types – Should be indefinitely extensible as new
apps are added.

6

Root

.com

.google.com

.edu

.msn.com .tntech.edu .utk.edu

DNS Design – Base Assumptions

 Provide at least the same info as HOSTS.TXT.

 Allow the database to be maintained in a distributed manner.

 Have no obvious size limits for names, components, data, etc.

 Interoperate across the Internet and as many other environments as possible.

 Provide tolerable performance.

 Initial design assumed the necessity of striking a balance between a lean
service and completely general distributed DB.

 Lean service – Desirable for more implementation efforts and early availability.

 General design – Reduce the cost of introduction, provide greater functionality, and
increase the places DNS would be used.

7

DNS Design - Constraints

 Cost could only be justified if it provided extensible services.

 Should be independent of network topology.

 Capable of encapsulating other name spaces.

 To be universally acceptable, should avoid trying to force a single OS,
architecture, or organizational style on users.

 Avoid any constraints due to outside influences.

 Permit as many different implementation structures as possible.

8

DNS Architecture- Active Components

 Name Servers – Repositories that answer queries with their possessed information.

 Resolvers – Interfaces to client applications, embody algorithms for finding name
servers with the needed info.

 May be combined into one application or separated to suit needs.

 Often useful to centralize resolver function in one or more name servers.

 Allows sharing the use of cached info.

 Allow less capable hosts to rely on the resolving services of these servers without
needing their own resolver.

9

DNS Design – Name Space

 Variable Depth Tree

 Each node has an associated label – up to 63 octets in size. Case Insensitive.

 Domain name of a node is the concatenation of all labels on the path from the
node to the root. Up to 256 total octets to aid implementation.

 Example: .scholar.google.com - Null(root)->.com->google.com->scholar.google.com

 Config files represent names as character strings separated by dots, but
applications are free to do otherwise.

 Example: Venera.Isi.Edu is a name with four labels – the null root is usually
omitted.

 Mailbox names typically encode the part before the @ in one label.

 Recommended to mirror the structure of the organization controlling the local
domain.

10

DNS Design – Attached Data

 Does not constrain data that can attach to a name.

 However, does specify some structures so replies to queries can be limited to relevant info.

 Data for each name is organized as a set of Resource Records (RRs).

 Each contain a well-known type and class field followed by app data.

 Multiple values of the same type are represented by separate RRs.

 Provided space efficiency to reduce max RR size.

 Types – Represent abstract resources or functions.

 Example: Host addresses.

 Class – Divides Database from type, and specifies protocol family.

 Example: DARPA Internet

11

DNS Design – Database Distribution

 Provides 2 major mechanisms for transferring data from a source to
destination.

 Zones – Sections of the global database controlled by a specific organization

 The organization is responsible for distributing copies to servers that make the
zones available to the wider Internet.

 Caching – Data acquired in response to a request can be locally stored for use with
future requests.

 Intent – Both mechanisms should be invisible to the user who will see a single DB
without boundaries.

12

DNS Design - Zones

 Zones are a complete description of a contiguous section of the total tree name
space, with some pointer info the other continguous zones.
 Can be a single node or whole tree, but typically a subtree.

 Data is typically maintained in a master file on the name server.

 Authoritative data is stored by the server itself rather than retrieved or cached.

 Organizations gain control of a zone of the name space by requesting a parent
organization delegate a subzone to them.
 The subzone consists of a single node. The organization can then build this out without

the original parent

 Organization must maintain zone data and provide redundant servers for the zone.

 Zone transfers require TCP for reliability.

 Goal – A parent organization should be able to have a domain name even if it lacks
the communication or host resources for supporting the DNS service.

13

DNS Design - Caching

 DNS resolvers cache responses for use by later queries.

 Controlled by TTL field in units of seconds. Set in each RR.

 Low TTL reduces periods of inconsistency while high TTL minimizes traffic load and
allows for periods of unavailability.

 Example: Recommended TTL value for host names is 2 days.

14

Implementation Status at Time of
Writing

 DNS in use throughout DARPA Internet.

 HOSTS.TXT still in use by older hosts, but DNS is recommended.

 At the time, Domain space partitioned into around 30 Top Level Domains
(TLDs).

 Example: .com, .edu.

 Currently, there are over 1,000 TLDs.

 SRI-NIC manages domains for all non-country TLDs and delegates subdomains to
organizations that wish to maintain their own name space.

15

Implementation Status at Time of
Writing – Root Servers

 Search algorithm for DNS allows a resolver to search downward from domains
it can access.

 Root server and TLDs supported by 7 redundant name servers.

 Typical traffic 1 query per second.

 Vast majority of queries are 4 types

 All info, host name to address, address to host, and mail info (MX).

 10-15% of all queries referred to servers for lower level domains.

 Berkeley University provided Unix Support for DNS with BIND.

 First organization to depend solely on DNS for host/address resolution.

16

Surprises

 Refinement of Semantics

 Initial assumption was the form and content of information was well understood.

 Did not pan out as even common concepts such as IP host addresses caused issues.

 Supporting multiple addresses for single hosts caused huge discussions about if
addresses should be ordered and how.

 Performance

 Worse than originally planned.

 Heavy load, network growth, slow speed links led to multiple queries from the
same sources, causing further delays.

 Difficulty in measuring performance due to being swamped by unrelated effects
such as gateway changes and DNS software releases.

 Caching had better performance than expected, exceeding HOSTS.txt due to
anticipating large database sizes.

17

Surprises

 Negative Caching

 DNS provides 2 negative responses to queries – Name does not exists, and name
exists but requested data does not.

 Examples: Misspelled name, Host type of mailbox that is not set.

 Happened much more often than expected.

 Up to 60% error rate on root servers.

 Caused by program using old-style host names or names from other mail services
such as UUCP.

 Recommendations to reduce these helped, but negative responses were still 25-
50%.

 Should have cached negative responses as well to improve performance.

18

Successes – Variable Depth Hierarchy

 Variability in tree depth.

 Growth of Workstation and Local Networks meant organizations were finding a
need to organize within their own networks.

 Vastly different organization sizes led to need for different depths needed in
the hierarchy.

 Made it possible to encapsulate any fixed level or variable level system.

 Example: UK’s name service NRS and DNS were able to mutually encapsulate
each other’s name space.

19

Successes – Organizational Structuring of
Names

 Naming structure’s independence from network, topology, etc.

 Very popular and prolific.

 However, TLD structure is controversial.

 Authors stat they could change this however as DNS is flexible enough to
accommodate almost any tree-based structural choice.

 Requires a consensus to be reached.

20

Successes – Datagram Access

 UDP Datagram used as main method of communication (outside of TCP-based
zone transfers).

 Maximum size of 512-bytes did not lead to issues and helped reduce resource
usage.

 Seemed to be essential due to poor performance of the Internet.

 Drawback

 Need development and refinement of retransmission strategies that are already
well developed for TCP.

 Lead to much unnecessary traffic caused by repeated queries.

21

Successes – Additional Section Processing
and Caching

 Additional Section Processing - Allows name servers to provide additional info
that fits in the datagram beyond the answer to a query.

 Allows the server to anticipate additional requests.

 Example: When a root server passes the name of a host, they will include its
address as it is assumed it is needed for use.

 Experiments show this was estimated to cut query traffic in half.

 Caching – essential to the poor performance of the Internet.

 Problem – DNS Admin strategies can make it less reliable or useful.

 Example: Admins assigning short TTLs to RR nodes that rarely change.

22

Successes – Mail Address Cooperation

 Agreement between representatives of different communities to use
organizationally structured domain names for mail addressing and routing.

 CSNET, BITNET, UUCP, and DARPA Internet among these.

 Provided a good opportunity to clean up mail addresses.

23

Shortcomings – Type and Class Growth

 Initially there was great demand to increase the size of type and class
specifiers to allow for many additions.

 Only 2 type and classes added over 5 years, and 2 types were dropped.

 Either demand was misunderstood or new types and classes were too difficult to
create.

 Problem – Almost all existing software regarded DNS types and classes as
compile-time restraints, which meant they must be recompiled to deal with
changes.

 Methodology and guidelines for adding these are needed, but the problem is
this involves the design of special name space sections, TTL selections, etc.

 Different members of the Internet have different views – No Consensus.

24

Shortcomings – Easy Upgrading of
Applications

 Conversion of network applications to use DNS was difficult.

 Problem – Needed to handle Transient failure, where a distributed naming system
would have periods where it cannot access certain info.

 Access to naming system also needed to be better integrated into Operating
Systems, so application designers did not have to add functionality themselves.

 Example: Adding access as the shell level.

25

Shortcomings – Distribution of Control vs.
Distribution of Expertise or Responsibility

 Distribution of authority does not distribute expertise.

 This means maintainers will fix things till they work, not till they work well.

 Leads to problems with consistency in name server design.

 System designers should try to compensate for this.

 Initial policy was to delegate a domain to any organization which filled out a form
listing its redundant servers and other requirements.

 Should have made them demonstrate their redundant servers had real data before
delegating the domain and assure they were on different networks to prevent a
Single Point of Failure.

 Examples in documentation were designed for narration, not for actual use.
Sample TTL values of 1 hour instead of the recommended days.

 Debugging of systems made difficult due to lack of the protocol providing a method
to retrieve version. 26

Conclusion

 Need for distributed functionality and new opportunities for future services
justify the creation of DNS.

 Modifications to HOSTS.TXT could have postponed a new system, but would
have still led to large issues.

 Considerations that would have improved DNS:

 The usefulness of negative response caching.

 More difficult to remove functions than add new ones due to the need for the
community to all convert to a new version of the service.

 Implementers will often lose interest once a level of performance they expect is
achieved.

 Distributed software should including a version number and parameters that are
easily viewed.

 Variations in the implementation structure is a good idea, but service variations
cause issues.

27

Directions for Future Work

 DNS in production so changes are difficult.

 Research in other naming systems could provide useful additions.

 Data description techniques from ISO could provide a better mechanism for
adding data types, while DNS infrastructure could speed ISO prototyping.

 Develoipng an approach to structure the total tasks into layers depending on
the situation could be valuable.

 Example: A system for managing file names on a local disk vs. host names.

 Technical and/or political solutions to the growing complexity of naming.

28

Critique

 Good background information provided

 Fairly thorough explanation of reasoning

 Not much information on how improvements would or could be actually done.

 Production system – Difficult to change as mentioned.

 Not much explanation of other Distributed Naming Systems.

 Security and Privacy not considered or addressed.

29

Potential Improvements

 Designing for Availability

 Initial designs were good for the beginning.

 Root servers could and did lead to some traffic issues.

 Much criticism at the time about root servers as well.

 Improving Performance

 Potential for better caching via distribution of most popular queries at regular
intervals to subdomains.

 Example: Google.com is one of the most queried sites, so distribute its
information regularly to subdomain resolvers.

30

Potential Improvements

 Authentication and Data Integrity – DNSSEC

 If a host points to a malicious name server, there is nothing in the initial design to
prevent them from getting bad data.

 Use of Digital Signatures (hashed result information encrypted with private keys)
with Public Key Infrastructure to verify the authenticity of result data.

 DNSSEC can result in leakage of zone information due to keys being assigned by
zone and NSEC responses.

 Example: Querying for b.google.com would return an NSEC response stating no domain
exists between a.google.com and z.google.com if they existed.

 RFC 4470 proposes listing no domain exists between two lexically close domains
that may not actually exist.

 Example: Querying for b.google.com would return an NSEC response stating no domain
exists between a.google.com and b.google.com

31

Potential Improvements

 Confidentiality

 No confidentiality options specified.

 Allows for network analysis attacks at DNS level.

 Could provide option for encryption of Queries and Responses

32

Potential Improvements

 Better Education and Discussion with Varied Members of the Community

 Many assumptions made about knowledge

 Not many specifications on best practices provided

 Example: Could have improved adoption of changes by specifying types and classes
not be hardcoded at compile time.

 Did not seem to consider many ways the Internet was already being used.

 Many times it is mentioned there was no consensus found – could have spent more
time trying to get a majority agreement on some features.

 Example: TLD and root servers.

33

Potential Improvements

 Better experimentation and testing

 Not much mention of how testing and initial trials were performed.

 Could potentially have tested longer and more thoroughly to address problems
before DNS was put into production.

 Distribute out to candidates first, receive feedback?

34

Takeaways

 DNS was a huge effort to replace an outdated system – HOSTS.TXT.

 Openness and variability worked great for the Distributed nature of the
Internet.

 Lack of direction, guidelines, and discussion with the community and admins
led to large issues such as problems with TTL times leading to poor caching
practices.

 Hard to account for all of the potential use cases.

 Availability was a much bigger concern than authentication or confidentiality.

 Overall, worked well. Most issues were caused by poor practices of end
users/administrators and unforeseen issues such as the amount of negative
responses that could have been cached to improve performance.

35

References

 Mockapetris, P., & Dunlap, K. J. (1988, August). Development of the domain
name system. In Symposium proceedings on Communications architectures
and protocols (pp. 123-133).

 R. Arends, R. Austein, M. Larson, D. Massey, & S. Rose. DNS Security
Introduction and Requirements. RFC 4033.
https://tools.ietf.org/html/rfc4033

 S. Weiler (2006, April). Minimally Covering NSEC Records and DNSSEC On-line
Signing. RFC 4470. https://tools.ietf.org/html/rfc4470

36

THANK YOU!

37

	Development of the Domain Name System
	Outline
	Introduction - Background
	Introduction - Reasoning
	Introduction – Existing Distributed Naming Systems
	DNS Design
	DNS Design – Base Assumptions
	DNS Design - Constraints
	DNS Architecture- Active Components
	DNS Design – Name Space
	DNS Design – Attached Data
	DNS Design – Database Distribution
	DNS Design - Zones
	DNS Design - Caching
	Implementation Status at Time of Writing
	Implementation Status at Time of Writing – Root Servers
	Surprises
	Surprises
	Successes – Variable Depth Hierarchy
	Successes – Organizational Structuring of Names
	Successes – Datagram Access
	Successes – Additional Section Processing and Caching
	Successes – Mail Address Cooperation
	Shortcomings – Type and Class Growth
	Shortcomings – Easy Upgrading of Applications
	Shortcomings – Distribution of Control vs. Distribution of Expertise or Responsibility
	Conclusion
	Directions for Future Work
	Critique
	Potential Improvements
	Potential Improvements
	Potential Improvements
	Potential Improvements
	Potential Improvements
	Takeaways
	References
	Slide Number 37

