

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis, Yanbiao Li, Alexander Afanasyev, and Lixia Zhang

> Presenter Md **Bulbul** Sharif

Outline

- Introduction
- Background
- An Example Application
- Goals, Challenges and Solutions of the NDN Security Design
- NDN Security Bootstrapping Process
- Comparison of NDN and TCP/IP Security
- Personal Opinions

Introduction

- Named data networking (NDN)
 - Internet architecture which changes the network communication model.
 - Application-layer names instead of delivering packets to receivers identified by IP addresses.
 - Secure data at the network layer.
- An overview of NDN's security framework
- Illustrate the developed mechanisms
- Illustrate how applications can utilize name semantics

Background

- Shifting HTTP's request and response to the network layer.
- Request carried in an NDN Interest packet containing the name of the requested data.
- Producers: Produce data, Consumers: Request data.
- NDN and HTTP data differs in two ways
 - All NDN Data packets are immutable
 - NDN Data packet carries a signature

An Example: NDNFit

NDN Security Design Goals

- Secures data directly
- Provide highly usable security
- Cryptographic key management and operations should be automated
- Minimizing the reliance on manual configuration

NDN Security Design Challenges

Establishing Trust Anchor(s)

- Cryptographic verifications must terminate at a trust anchor.
- Authority of each networked system establishes its own trust anchor(s).
- Entities under authority can discover trust anchors through local system settings.

Providing Effective Solutions for Trust Management

- Must enable applications to express their own trust policies.
- Entities are able to obtain certificates and learn policies from trustworthy parties.
- Inform entity which keys should be used for signature generation and verification.

Providing Usable Key Management Solutions

- Requiring mechanisms to assign and deliver the correct keys to the parties automatically.
- Enables developers to define naming conventions to construct the names of the cryptographic keys.

Basic Components of NDN Security

Digital Keys

• NDN treats cryptographic keys as any other named data and allow them to be retrieved using Interest-Data exchanges at the network layer.

Certificates

- A certificate is a Data packet carrying a public key and can be fetched like any other Data packet.
- Indnfit/alice/KEY/001/N-testbed/002

Trust Policies

- Applications define trust policies
- A trust policy can require that the key used to authenticate data must not be used to sign encryption keys.

Security Bootstrapping in NDN

Obtaining Trust Anchors

- An entity needs trust anchors to verify other entities' authenticity.
- NDN security design assumes that different systems establish their own trust anchors.

Obtaining Certificates

- To generate Data packets with valid names and verifiable signatures, a producer must first obtain a name and a certificate.
- Developed the NDN certificate management system to process certificate requests automatically.

Learning Trust Policies

- To determine cryptographic key's legitimacy an application needs to obtain trust policies.
- Default policy may define that Data packets carrying trust policies must be directly signed by a trust anchor with a given name.

Data Authenticity

Validation by Trust Policies

 Data name, the signing key name, the relationship between the key name and Data name, and the trust anchor name must follow application-defined rules.

Signature Verification

- To verify the signature in a received Data packet, a consumer retrieves the certificate of its producer.
- The received data packet is considered valid only if all the certificates in the above chain have valid signatures and satisfy the trust policies.

Data Confidentiality

- Developed named-based access control (NAC) and its enhancement with attributebased encryption (NAC-ABE)
- Name-Based Access Control
 - Key Generation
 - Data Production
 - Data Consumption
- Access Control Granularity

Data And Certificate Availability

- Improving Data Availability Via In-network Storage
 - NDN secures data directly, so Data packets can be retrieved from anywhere

Certificate Availability

- NDN certificates are carried in Data packets
- Authors have developed the NDN certificate bundle to allow each producer to collect all the certificates

Comparison of NDN and Tcp/Ip Security

Securing Data vs Securing Channels

- TCP/IP a channel between two processes.
- Data could have been altered before entering the channel and loses cryptographic protection as soon as it leaves the channel
- NDN secures data directly, removing any reliance on the security of intermediate communication channels
- Establishing Trust Using Name Semantics
 - Existing certificate authentication solutions lack the means to effectively reason about trust.
 - In NDN, entities may utilize local authorities instead of commercial certificate authorities as trust anchors.

Personal Opinions

- The authors assume that readers have some basic knowledge of cryptography.
- Authors have claimed that they omit details because of space.
- Developed other tools.
- How to solve scalability and manageability issues?
- What if local authorities compromise?

Reference

- [1] L. Zhang et al., "Named Data Networking," ACM SIGCOMM Comp. Commun. Review, 2014.
- [2] H. Zhang et al., "Sharing mHealth Data via Named Data Networking," ICN, 2016, pp. 142–47.
- [3] Y. Yu et al., "An Endorsement-Based Key Management System for Decentralized NDN Chat Application," NDN, Tech. Rep. NDN-0023, July 2014; http://named-data.net/publications/techreports/.
- [4] R. L. Rivest and B. Lampson, "SDSI A Simple Distributed Security Infrastructure," *Crypto*, 1996.
- [5] Z. Zhang, A. Afanasyev, and L. Zhang, "NDNCERT: Universal Usable Trust Management for NDN," *Proc. 4th ACM Conf. Information-Centric Networking*, 2017, pp. 178–79.
- [6] Y. Yu et al., "Schematizing Trust in Named Data Networking," Proc. 2nd ACM Int'l. Conf. Information-Centric Networking, 2015, pp. 177–86.
- [7] M. Mosko, E. Uzun, and C. A. Wood, "Mobile Sessions in Contentcentric Networks," *IFIP Networking*, 2017.

- [8] Z. Zhang et al., "NAC: Automating Access Control via Named Data," IEEE MILCOM, 2018.
- [9] C. Marxer and C. Tschudin, "Schematized Access Control for Data Cubes and Trees," Proc. ACM Conf. Information-Centric Networking, 2017.
- [10] M. Mittal, A. Afanasyev, and L. Zhang, "NDN Certificate Bundle," NDN, Tech. Rep. NDN-0054, 2017.
- [11] C. Cimpanu, "14,766 Let's Encrypt SSL Certificates Issued to PayPal Phishing Sites," posted 24 Mar. 2017; https:// www.bleepingcomputer.com/news/security/ 14-766-lets-encrypt-ssl-certificates-issued-to-paypal-phishing-sites/.
- [12] R. Tourani et al., "Security, Privacy, and Access Control in Information-Centric Networking: A Survey," IEEE Commun. Surveys & Tutorials, 2017.
- [13] C. Ghali, G. Tsudik, and C. A. Wood, "When Encryption Is Not Enough: Privacy Attacks in Content-Centric Networking," Proc. 4th ACM Conf. Information-Centric Networking, 2017, pp. 1–10.
- [14] C. Ghali et al., "Closing the Floodgate with Stateless Content-Centric Networking," Proc. 2017 IEEE 26th Int'l. Conf. Computer Communication and Networks, 2017, pp. 1–10.
- [15] L. Zhang et al., "Named Data Networking (NDN) Project," NDN Tech. Rep. NDN-0001, Oct. 2010.

Thank You