

CSC 7970 Paper 2 Presentation

Networking Named Content

Vaibhav Ravinutala

*Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H. Briggs, and Rebecca L. Braynard. 2009. Networking named content. In Proceedings of the 5th international conference on Emerging networking experiments and technologies (CoNEXT '09). Association for Computing Machinery, New York, NY, USA, 1–12. DOI:https://doi.org/10.1145/1658939.1658941

Presentation on 2nd April 2020

- Introduction
- CCN Node Model
- Transport
- Routing
- Content-based Security
- Evaluation
- My thoughts
- References

Introduction

 \rightarrow Trying to solve a 21st Century content distribution problem with a system created in 1960s and '70s won't work.

→ Abstraction: from network's "where" to "what" users' care

 \rightarrow Divide between existing networking model and the current day user requirements from the internet results compatibility issues like **Availability**, **Security, Location-dependence**

 \rightarrow Paper produces an argument that **named data** is better abstraction than **named hosts**, there by proposes "Content Centric Networking"

 \rightarrow **Resilience** and **Performance** evaluation is performed and results are analysed

Introduction: Comparison of IP and CCN Protocol Stacks

Figure: CCN moves the universal component of the network stack from IP to chunks of named content.

Introduction: Comparison of IP and CCN Protocol Stacks

 \rightarrow Two Critical layers of CCN

- 1. Strategy
- 2. Security

- Introduction
- CCN Node Model
- Transport
- Routing
- Content-based Security
- Evaluation
- My thoughts
- References

CCN Node Model

 \rightarrow Exorbitant amount of data being pushed onto internet every year and people valuing internet for it's content required a new model of communication networking for internet. CCN tries to be that model.

 \rightarrow CCN uses named data packets instead of conventional host identifiers for communication

 \rightarrow The CCN model not radically different from the existing model. It retains the design decisions from existing model retaining it's simple, robust and scalable nature.

CCN Node Model: CCN packet types

Figure: CCN packet types

CCN Node Model: CCN forwarding engine model

Figure: CCN forwarding engine model

CCN Node Model: CCN forwarding engine model

- \rightarrow Interest Packet Processing
- \rightarrow Data Packet Processing
- \rightarrow Disruption Tolerant Networking

- Introduction
- CCN Node Model
- Transport
- Routing
- Content-based Security
- Evaluation
- My thoughts
- References

Transport

 \rightarrow Operating on unreliable packet delivery services, highly dynamic connectivity, ubiquitous computing.

- \rightarrow Reliable and Resilient delivery: unsatisfied interests
- → Duplication: "nonce value"
- \rightarrow CCN flow and flow and sequencing is similar to TCP ack packets

Transport: Reliability and Flow Control

 \rightarrow Flow Balance

- \rightarrow Overlap of data and Requests: similar to TCP SACK
- \rightarrow Congestion: CCN, No need of additional techniques to control
- \rightarrow CCN flow and flow and sequencing is similar to TCP ack packets

Transport: Sequencing

 \rightarrow Sophisticated sequencing but similar to TCP ACK

→ Individual names, Components, Octers

 \rightarrow SHA256 digest

 \rightarrow specify RightmostChild for recent version of the content

Transport: Rich Connectivity, Mobility and Strategy

19 JUL 15 JUL 15

- \rightarrow Supports Multiple interfaces
- \rightarrow CNN data exchange is not affected by Rapid change in connectivity
- \rightarrow Best face forwarding interests
- → FIB Entry: a program Instructions: actions, triggers, attributes
- \rightarrow CCN Strategy layer, CCN Strategy

- Introduction
- CCN Node Model
- Transport
- Routing
- Content-based Security
- Evaluation
- My thoughts
- References

Routing

- \rightarrow Routing mechanism that works well for IP should work well with CCN
- \rightarrow Automatic protection in routing infrastructure
- → Link-state intra-domain routing Prefix based long match look-ups IP FIB Distributed machinery
- → Inter-domain routing bottom-up approach ISP dependance

Figure: Routing Interests to a domain media content

- Introduction
- CCN Node Model
- Transport
- Routing
- Content-based Security
- Evaluation
- My thoughts
- References

- \rightarrow CCN is based on notion of content-based security
- \rightarrow Authenticate, Encrypt, Validate

Content-based Security: Content Validation

 \rightarrow CCN is authenticates binding between names and content,

 \rightarrow Authenticate, Encrypt, Validate

Content-based Security: Managing the trust

- \rightarrow Data: peer-to-peer; Security: end-to-end
- → Contextual trust; Digital Certificates
- → Trusting Keys SDSI/SPKI model
- → Evidence bases Security Secure reference

- Introduction
- CCN Node Model
- Transport
- Routing
- Content-based Security
- Evaluation
- My thoughts
- References

Evaluation: Data transfer efficiency

19 JUL 19 JUL 19

 \rightarrow CNN is compared to TCP in terms of bulk data transfer performance

 \rightarrow Amount of Pipelining and App-to-App throughput are plotted

 \rightarrow Comparable Bulk data performance, CCN performs better when there are multiple Interests.

	Bytes (packets)		Overheads	
	Sent	Received	Encap	Transact
Web page (6429 bytes)				
HTTP	723 (9)	7364 (9)	15%	11%
CCN/ETH	811 (8)	8101 (6)	26%	13%
CCN/UDP	325 (3)	6873 (5)	7%	5%
Secured Web page (16944 bytes)				
HTTPS	1548 (16)	21232 (22)	25%	9%
CCN/ETH	1791 (16)	20910 (14)	23%	11%
CCN/UDP	629 (5)	18253 (14)	8%	4%

Evaluation: Content Distribution efficiency

- Introduction
- CCN Node Model
- Transport
- Routing
- Content-based Security
- Evaluation
- My thoughts
- References

My Thoughts

 \rightarrow Language is **simple** and **clear.**

 \rightarrow Sample Size for Evaluation is small, i.e **only two hosts** (Google and Wells Fargo) are considered for comparison.

 \rightarrow Paper doesn't talk much about **scalability** of CCN

 \rightarrow The CCN model is not radically different from the existing model, as I initially presumed. So it can be implemented without having to heavily change the existing hardware.

 \rightarrow **Resilience** and **Performance** evaluation analysis can be extended to next-gen applications such as AR/VR, IoT, driverless cars and 5G.

- Introduction
- CCN Node Model
- Transport
- Routing
- Content-based Security
- Evaluation
- My thoughts
- References

References

Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H. Briggs, and Rebecca L. Braynard. 2009. Networking named content. In Proceedings of the 5th international conference on Emerging networking experiments and technologies (CoNEXT '09). Association for Computing Machinery, New York, NY, USA, 1–12. DOI:<u>https://doi.org/10.1145/1658939.1658941</u>

This presentation uses slides and interpretations from below sources also

https://www.slideshare.net/haroonrashidlone/named-data-networking?qid=7ca0463d-3cd8-48ac-b42c-032d82da1c84&v=& b=&from_search=2

https://www.networkworld.com/article/3313338/introducing-named-data-networking.html

https://slideplayer.com/slide/6229117/

https://www.slideshare.net/meshingom/content-centric-networks

Queries??

