
CSC4200/5200 – COMPUTER NETWORKING

TRANSPORT LAYER PROTOCOLS

Instructor: Susmit Shannigrahi

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

mailto:sshannigrahi@tntech.edu

2

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

3

What is transport layer?

● Problem: How to turn this host-to-host packet delivery service
into a process-to-process communication channel?

4

Transport services and protocols
● provide logical communication

between app processes running
on different hosts

● transport protocols run in end
systems
– send side: breaks app

messages into segments,
passes to network layer

– rcv side: reassembles segments
into messages, passes to app
layer

● more than one transport protocol
available to apps
– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

5

Principles of reliable data transfer

● important in application, transport, link layers
– top-10 list of important networking topics!

6

TCP – Transmission Control Protocol

● full duplex data:
– bi-directional data flow in

same connection
– MSS: maximum segment size

● connection-oriented:
– handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

● flow controlled:
– sender will not overwhelm

receiver

● point-to-point:
– one sender, one receiver

● reliable, in-order byte
steam:
– no “message boundaries”

● pipelined:
– TCP congestion and flow

control set window size

7

TCP – Transmission Control Protocol

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Host 1

Host 2

segment

8

TCP Segment

Why?

IP
header

TCP segmentTCP header

IP Data

IP → No more than MTU (1500 Bytes)

TCP header → 20 bytes

TCP segment → 1460 bytes

9

TCP Header

TCP Header Format

SYN

FIN

RST

PSH

URG

ACK

10

TCP – Transmission Control Protocol

● full duplex data:
– bi-directional data flow in

same connection
– MSS: maximum segment size

● connection-oriented:
– handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

● flow controlled:
– sender will not overwhelm

receiver

● point-to-point:
– one sender, one receiver

● reliable, in-order byte
steam:
– no “message boundaries”

● pipelined:
– TCP congestion and flow

control set window size

11

TCP seq. numbers, ISNs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Sequence number for the first byte

Why not use 0 all the time?
● Security
● Port are reused, you might end up

using someone else’s previous
connection

● Phone number analogy

● TCP ISNs are clock based
● 32 bits, increments in 4 microseconds
● 4.55 hours wrap around time

12Transport Layer3-12

TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

13

TCP Three-way Handshake

Timeline for three-way handshake algorithm

The idea is to tell each other
The ISNs

SYN → Client tells server that
it wants to open a connection,
Client’s ISN = x

SYN+ ACK → Server tells
Client → Okay → Server’s ISN
= y, ACK = CLSeq + 1

Why increment by 1?

14

What if the SYN is lost?

Timeline for three-way handshake algorithm

Start Timer and resend

15

TCP Retransmission - ARQ

Each packet is “ACK”ed by
the receiver

If ACK isn’t received by
timeout, resend

Example, Stop-n-wait

Sender
Receiver

Packet

ACK

Retransmit

Timeout

16

How long should the sender wait?

For TCP, timeout is a function
of RTT

Keep a running estimate of RTTs
by watching the ACKs

EstimatedRTT = (1 – α) • EstimatedRTT
+ α • SampleRTT

Alpha is generally 0.125

Timeout = 2* EstimatedRTT

Sender
Receiver

Packet

ACK

Retransmit

Timeout

17

But stop and wait is inefficient

Only one segment in-flight

Especially bad if delay is high!

Solution – sliding window

Sender
Receiver

Packet

ACK

Retransmit

Timeout

18

Sliding Window Revisited

Relationship between TCP send buffer (a) and receive buffer (b).

Sending Side
LastByteAcked ≤ LastByteSent
LastByteSent ≤ LastByteWritten

Receiving Side
LastByteRead < NextByteExpected
NextByteExpected ≤ LastByteRcvd + 1

19

Used for TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so sender
won’t overflow receiver’s buffer by
transmitting too much, too fast

flow control

20Transport Layer3-20

TCP flow control

● receiver “advertises” free
buffer space in the header

● sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

● guarantees receive buffer will
not overflow

21

TCP Fast Retransmission

Timeouts are wasteful

Triple duplicate ACKs

Retransmits before timeout

22

TCP Fast Retransmission - SACK
What if multiple segments are lost?

Very good explanation:
https://packetlife.net/blog/2010/jun/17/tcp-selective-acknowledgments-sack/

23Transport Layer3-23

TCP: closing a connection

● client, server each close their side of connection
– send TCP segment with FIN bit = 1

● respond to received FIN with ACK
– on receiving FIN, ACK can be combined with own FIN

● simultaneous FIN exchanges can be handled

24Transport Layer3-24

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state

ESTABESTAB

25

Reading

https://book.systemsapproach.org/e2e/tcp.html#segment-format
https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-terminatio
n

https://book.systemsapproach.org/e2e/tcp.html#sliding-window-revisited

https://book.systemsapproach.org/e2e/tcp.html#segment-format
https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination
https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination

	Slide 1
	Slide 2
	Slide 3
	Transport services and protocols
	Principles of reliable data transfer
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	Slide 7
	Slide 8
	TCP Header
	Slide 10
	Slide 11
	Slide 12
	Connection Establishment/Termination in TCP
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	TCP flow control
	Slide 20
	Slide 21
	Slide 22
	TCP: closing a connection
	Slide 24
	Slide 25

