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What is transport layer?

● Problem:  How to turn this host-to-host packet delivery service 
into a process-to-process communication channel?
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Transport services and protocols
● provide logical communication 

between app processes running 
on different hosts

● transport protocols run in end 
systems 
– send side: breaks app 

messages into segments, 
passes to  network layer

– rcv side: reassembles segments 
into messages, passes to app 
layer

● more than one transport protocol 
available to apps
– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical
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Principles of reliable data transfer

● important in application, transport, link layers
– top-10 list of important networking topics!
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TCP – Transmission Control Protocol

● full duplex data:
– bi-directional data flow in 

same connection
– MSS: maximum segment size

● connection-oriented: 
– handshaking (exchange of 

control msgs) inits sender, 
receiver state before data 
exchange

● flow controlled:
– sender will not overwhelm 

receiver

● point-to-point:
– one sender, one receiver 

● reliable, in-order byte 
steam:
– no “message boundaries”

● pipelined:
– TCP congestion and flow 

control set window size
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TCP – Transmission Control Protocol

1        2        3        4         5        6       7         8

1        2        3        4         5        6       7         8

Host 1

Host 2

segment



8

TCP Segment

Why?

IP
header

TCP segmentTCP header

IP Data

IP → No more than MTU (1500 Bytes)

TCP header → 20 bytes

TCP segment → 1460 bytes
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TCP Header

TCP Header Format

SYN

FIN

RST 

PSH 

URG 

ACK
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TCP – Transmission Control Protocol

● full duplex data:
– bi-directional data flow in 

same connection
– MSS: maximum segment size

● connection-oriented: 
– handshaking (exchange of 

control msgs) inits sender, 
receiver state before data 
exchange

● flow controlled:
– sender will not overwhelm 

receiver

● point-to-point:
– one sender, one receiver 

● reliable, in-order byte 
steam:
– no “message boundaries”

● pipelined:
– TCP congestion and flow 

control set window size
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TCP seq. numbers, ISNs

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Sequence number for the first byte

Why not use 0 all the time?
● Security
● Port are reused, you might end up

using someone else’s previous 
connection

● Phone number analogy

● TCP ISNs are clock based
● 32 bits, increments in 4 microseconds
● 4.55 hours wrap around time
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TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
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TCP Three-way Handshake

Timeline for three-way handshake algorithm

The idea is to tell each other 
The ISNs

SYN → Client tells server that
it wants to open a connection,
Client’s ISN = x

SYN+ ACK → Server tells 
Client → Okay → Server’s ISN 
= y, ACK = CLSeq + 1

Why increment by 1?
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What if the SYN is lost?

Timeline for three-way handshake algorithm

Start Timer and resend
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TCP Retransmission - ARQ

Each packet is “ACK”ed by
the receiver

If ACK isn’t received by 
timeout, resend

Example, Stop-n-wait

Sender
Receiver

Packet

ACK

Retransmit

Timeout
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How long should the sender wait?

For TCP, timeout is a function
of RTT

Keep a running estimate of RTTs
by watching the ACKs

EstimatedRTT = (1 – α) • EstimatedRTT 
+ α • SampleRTT

Alpha is generally 0.125

Timeout = 2* EstimatedRTT

Sender
Receiver

Packet

ACK

Retransmit

Timeout
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But stop and wait is inefficient

Only one segment in-flight

Especially bad if delay is high!

Solution – sliding window

Sender
Receiver

Packet

ACK

Retransmit

Timeout
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Sliding Window Revisited

Relationship between TCP send buffer (a) and receive buffer (b).

Sending Side
LastByteAcked ≤ LastByteSent
LastByteSent ≤ LastByteWritten

Receiving Side
LastByteRead < NextByteExpected
NextByteExpected ≤ LastByteRcvd + 1
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Used for TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than TCP 
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so sender 
won’t overflow receiver’s buffer by 
transmitting too much, too fast

flow control
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TCP flow control

● receiver “advertises” free 
buffer space in the header

● sender limits amount of 
unacked (“in-flight”) data to 
receiver’s rwnd value 

● guarantees receive buffer will 
not overflow
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TCP Fast Retransmission

Timeouts are wasteful

Triple duplicate ACKs

Retransmits before timeout
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TCP Fast Retransmission - SACK
What if multiple segments are lost?

Very good explanation:
https://packetlife.net/blog/2010/jun/17/tcp-selective-acknowledgments-sack/
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TCP: closing a connection

● client, server each close their side of connection
– send TCP segment with FIN bit = 1

● respond to received FIN with ACK
– on receiving FIN, ACK can be combined with own FIN

● simultaneous FIN exchanges can be handled
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FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait 
for 2*max 

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state

ESTABESTAB
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Reading

https://book.systemsapproach.org/e2e/tcp.html#segment-format
https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-terminatio
n

https://book.systemsapproach.org/e2e/tcp.html#sliding-window-revisited

https://book.systemsapproach.org/e2e/tcp.html#segment-format
https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination
https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination
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