CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

TRANSPORT LAYER PROTOCOLS
sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu
I
}u{”

Tennessee

TECH

mailto:sshannigrahi@tntech.edu

A e

Data
TEEEEEEEEEEEEEEEEEEEEES Apps (HTTP)

Segments
nsport (TCP/UDP TEEEEEEEEEEEEEEEEEEEEEE ransport (TCP/UDP
Network (IP)

Packets

Network (IP)

Frames
Link (Ethernet) E———— | Link (Ethernet)
‘ Ethernet Interface

|

|

] - |
Bits (1010001) E ! .
-)

(N R B RO B B J

What is transport layer?

* Problem: How to turn this host-to-host packet delivery service
Into a process-to-process communication channel?

Transport services and protocols

application
transport

. prowae ,oglca, communication ok

data link
between app processes running
on different hosts

* transport protocols run in end
systems

- send side: breaks app
messages into segments,
passes to network layer

- rcv side: reassembles segments .
Into messages, passes to app =
hysical

layer - , »
g v = |

* more than one transport protocol
available to apps

- Internet: TCP and UDP

Principles of reliable data transfer

* important in application, transport, link layers

—

O

O O

O =1 sending receiver I
% — process process

S I 1
-5 L()relictble ChCIhhe|)j

G =

—'—

(a) provided service

TCP — Transmission Control Protocol

* point-to-point:
- one sender, one receiver

* reliable, in-order byte
steam:

- no “message boundaries’
* pipelined:

- TCP congestion and flow
control set window size

’

* full duplex data:

- bi-directional data flow In
same connection

- MSS: maximum segment size

e connection-oriented:

- handshaking (exchange of
control msgs) inits sender,
receiver state before data
exchange

* flow controlled:

- sender will not overwhelm
receiver

TCP — Transmission Control Protocol

segment

Host 1

Host 2

TCP Segment

IP
header IP Data

TCP header TCP segment

IP - No more than MTU (1500 Bytes)

TCP header - 20 bytes

TCP segment - 1460 bytes

Why?

TCP Header

SYN

FIN

RST

PSH

URG

ACK

0 4 10 16 31

SrcPort DstPort

SequenceNum

Acknowledgment

HdrLen 0

Flags AdvertisedWindow

UrgPtr

Options (variable)

Data

WW

TCP Header Format

TCP — Transmission Control Protocol

* point-to-point:
- one sender, one receiver

* reliable, in-order byte
steam:

- no “message boundaries’
* pipelined:

- TCP congestion and flow
control set window size

’

* full duplex data:

- bi-directional data flow In
same connection

- MSS: maximum segment size

e connection-oriented:

- handshaking (exchange of
control msgs) inits sender,
receiver state before data
exchange

* flow controlled:

- sender will not overwhelm
receiver

10

TCP seq. numbers, ISNs

Host A Host B Sequence number for the first byte

U‘% E‘f" Why not use 0 all the time?
tys:; — « Security
'C'| Seq=42, ACK=79, e © * Port are reused, you might end up
host ACKs using someone else’s previous
— fgfie'pthOf connection
ecnoes
Seq=79, ACK=43, data = ‘C’ ’ « Phone number analo
host ACKs 4/eq i back ‘C’ gy
receipt
of echoed — ——] « TCP ISNs are clock based
‘C’ Seq=A3, ACK=8A____ « 32 bits, increments in 4 microseconds

* 4,55 hours wrap around time
simple telnet scenario

11

TCP seq. numbers, ACKS

Host A Host B
g B
User N

C Seq=42, ACK=79, w

Seq=79, ACK=43, data = ‘C’
host ACKs

receipt

of echoed | ——
‘"’ Seq=43, ACK=80_____

simple telnet scenario

host ACKs
receipt of

‘C’, echoes
back ‘C’

Transport Layq%lZ

TCP Three-way Handshake

Active participant Passive participant

I . .
(client) (serven) The idea is to tell each other

The ISNs

SYN - Client tells server that

It wants to open a connection,
Client’s ISN = x

SYN+ ACK - Server tells
Client - Okay - Server’s ISN
=y,ACK=CLSeq + 1

Timeline for three-way handshake algorithm

Why increment by 1?7 __

What If the SYN Is lost?

Active participant Passive participant
(client) (server)

Start Timer and resend

Timeline for three-way handshake algorithm

14

TCP Retransmission - ARQ

Receiver
Sender

Each packet is “ACK”ed by

Packet _

Timeout ACK If ACK Isn’t received by
timeout, resend

Example, Stop-n-walit

Retransmit

\

15

How long should the sender wait?

Receiver
Sender

For TCP, timeout Is a function

Packet

Timeout ACK Keep a running estimate of RTTs
by watching the ACKs

Retransmit

EstimatedRTT = (1 — a) « EstimatedRTT
\ + e Samp|eRTT
Alpha is generally 0.125

Timeout = 2* EstimatedRTT le

But stop and walit is inefficient

Receiver
Sender

Only one segment in-flight

Packet
I I\ Especially bad if delay is high!
Timeout

Solution — sliding window

Retransmit

17

Sliding Window Revisited

Sending Side
LastByteAcked < LastByteSent
LastByteSent < LastByteWritten

(a) (b) Receliving Side
LastByteRead < NextByteExpected
\ / NextByteExpected < LastByteRcvd + 1

. TCP / TCP
LastByteWritten LastByteRead
Y
) 4 '
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

Relationship between TCP send buffer (a) and receive buffer (b).

18

Used for TCP flow control

application may

\

application
rocess

remove data from

application

TCP socket buffers

... Slower than TCP
receiver is delivering —]
(sender is sending)

TCP socket 05
receiver buffers
N\

flow control

A
TCP
code
L] B
IP
code

receiver controls sender, so sender
won’t overflow receiver’s buffer by
transmitting too much, too fast

I
from sender

1 v
l
l

receiver protocol stack

19

TCP flow control

* receiver “advertises” free Source Por Destination Port [
buffer space in the header ——— o
Data | Reserved |5|¢ &\ ¥/T Window Size l
* sender limits amount of b Sheckeum |/ Ureent Pointer L]
unacked (“in-flight”) data to [

receiver’'s rwnd value

* guarantees receive buffer will
not overflow

Transport LayqbZO

TCP Fast Retransmission

Timeouts are wasteful

Triple duplicate ACKs

ack=100

Retransmits before timeout ack=100

ack=100
ack=100

Timeout o

Tirme Tirme

21

TCP Fast Retransmission - SACK

eg 3"’/
@ >‘<,ch|< 1><

eg d

@ Ack 1, Sack 3

Ack 1, Sack 3-4

2,,>-<
D"
X

Ack 4

\b

What if multiple segments are lost?

Very good explanation:
https://packetlife.net/blog/2010/jun/17/tcp-selective-acknowledgments-sack/

22

TCP: closing a connection

* client, server each close their side of connection
- send TCP segment with FIN bit =1

* respond to received FIN with ACK
- on receiving FIN, ACK can be combined with own FIN

* simultaneous FIN exchanges can be handled

Transport Layq§323

TCP: closing a connection

cli q 'ﬂ server state
= ESTAB

ESTAB —
clientSocket.close() —
FIN WAIT 1 can no longer FINbit=1, seq=x
B - send but can T \
receive data — CLOSE_WAIT
ACKbit=1; ACKnum=x+1 can still
FIN_WAIT 2 wait for S?Irgseé — send data
_— LAST ACK
/ﬂNbit=1, seq=y I
_ can no longer
TIMED_WAIT \ Send data
ACKbit=1; ACKnum=y+1
timed wait — v
for 2*max CLOSED
segment lifetime
CLOSED l

Transport Layg%r24

Reading

https://book.systemsapproach.org/e2e/tcp.html#segment-format

https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-terminatio
n

https://book.systemsapproach.org/e2e/tcp.html#sliding-window-revisited

25

https://book.systemsapproach.org/e2e/tcp.html#segment-format
https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination
https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination

	Slide 1
	Slide 2
	Slide 3
	Transport services and protocols
	Principles of reliable data transfer
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	Slide 7
	Slide 8
	TCP Header
	Slide 10
	Slide 11
	Slide 12
	Connection Establishment/Termination in TCP
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	TCP flow control
	Slide 20
	Slide 21
	Slide 22
	TCP: closing a connection
	Slide 24
	Slide 25

