
CSC4200/5200 – COMPUTER NETWORKING

ROUTING - CONTINUED

Instructor: Susmit Shannigrahi

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

mailto:sshannigrahi@tntech.edu

2

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

3

Forwarding vs Routing

● Forwarding:
● to select an output port based on destination address
and routing table

● Local path

● Routing:
● process by which routing table is built
● End-to-end path

4

Routing = Navigation

5

Why bother?

● Quality of path affects performance
● Longer path = more delay

● Balance path usage, avoid congested paths

● Deal with failures

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

6

Router architecture overview

Two key router functions:
● run routing algorithms/protocol (RIP, OSPF, BGP)
● forwarding datagrams from incoming to outgoing link

high-speed
forwarding

fabric

routing
processor

router input ports router output ports

forwarding data plane
(hardware)

routing, management
control plane (software)

forwarding tables computed,
pushed to input ports

Control Plane = routing
Vs
Data Plane = forwarding

7

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

X→ Z
Cost (x,v,w,z) = cost(x,v) + cost (v, w) + cost(w,z) = 10
Cost (x,w,z) = cost(x,w) + cost(w,z) = 8
Cost(x, y, z) = ?
Objective → find the lowest cost path between all nodes

Graph abstraction

8

Dijkstra’s Shortest-Path
Algorithm

● Given a graph (network) with link costs
● Find the lowest cost paths to all nodes

● Iterative
● After n iterations, you will find least cost path to n nodes

● S = Least cost paths already known, initially source node {U}
● D(v): current cost of path from source(U) to node V

● Initially, D(v) = c(u,v) for all nodes v adjacent to u
● D(v) = ∞ for all other nodes
● Update D(v) as we go

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

9

Dijsktra’s Algorithm

1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

10Kurose/ross

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9

Dijkstra’s algorithm: example

Step N'
D(v)

p(v)

0
1
2
3
4
5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u
uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx
uwxv 14,x 10,v

uwxvy 12,y

notes:
 construct shortest path tree by

tracing predecessor nodes
 ties can exist (can be broken

arbitrarily)

uwxvyz

11Network Layer 4-11

Dijkstra’s algorithm: another
example

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞
4,y
4,y
4,y

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

12

Dijsktra’s Link State Routing→

● Each node keeps track of adjacent links (neighbors)
● Each router broadcasts it’s state (network map)
● Each router runs Dijkstra’s algorithm

(finds the shortest path)
● Each router has complete picture of the network
● Example: Open Shortest Path First (OSPF)

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

13

OSPF – Open Shortest Path First

● SPF – another name for Link State Routing

● Each node creates an update packet - link-state packet (LSP)

● The ID of the node that created the LSP (U)
● A list of directly connected neighbors and the cost of the link ((V, 2), (X,

1), (W, 5))
● A sequence number (1122)
● A time to live for this packet (16)
● LSP ({U}, {(V, 2), (X, 1), (W, 5)}, {1122}, {16})→

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

14

OSPF – controlled flooding

Flooding of link-state packets. (a) LSP arrives at node X; (b) X floods LSP to A and
C; (c) A and C flood LSP to B (but not X); (d) flooding is complete

15

Link State Routing – controlled
flooding

● Flood when topology changes or link goes down
● Detected by periodic hello messages
● If message missed link down→

● Refresh and flood periodically

● Problems?
● High computational cost
● Reliable flooding may not be reliable

16

Tying it all together in
the network layer

L1H1
2.2.2.2
Ether: cccc

Youtube
5.5.5.5
Ether: dddd

SRC 2.2.2.2

DST 5.5.5.5

DHCP
server

Iface 1:
2.2.2.1
Ether: aaaa

Iface 2:
5.5.5.1
Ether: bbbb

ARP: WHO HAS 5.5.5.5?
youtube: I do!
Ethernet address: dddd

SRC 2.2.2.2

DST 5.5.5.5

SRC bbbb

DST dddd

SRC 2.2.2.2

DST 5.5.5.5

SRC 2.2.2.2

DST 5.5.5.5

Decapsulate IP packet

5.5.5.0/8 IF: 2

2.2.2.0/8 IF: 1

Routing Table
We are populating this!!!

17

● Network as a graph:
● https://book.systemsapproach.org/internetworking/routing.html#network-as-a-gra

ph
● Approximately 5 minutes

● Link state:
● https://book.systemsapproach.org/internetworking/routing.html#link-state-ospf
● Approximately 20 minutes

Reading Assignment

https://book.systemsapproach.org/internetworking/routing.html#network-as-a-graph
https://book.systemsapproach.org/internetworking/routing.html#network-as-a-graph
https://book.systemsapproach.org/internetworking/routing.html#link-state-ospf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Router architecture overview
	Graph abstraction
	Slide 8
	Slide 9
	Slide 10
	Dijkstra’s algorithm: another example
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

