CSC4200/5200 - COMPUTER NETWORKING

NETWORK PERFORMANCE BASICS

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

Recap - Network = Graph (Nodes + Links)

Packet Switching on the Internet

Performance - Terminology

- Bits = b
- Bytes = B
- Kilobytes = KB (1024 Bytes or 1000Bytes)
- Megabytes = MB (1024KB or 1000 KB)
" Ask ECE folks = 1000, 1Mbps = 1000*1000Bps
- Ask CS folks $=1024,1 \mathrm{MB}=1024 * 1024$ Bytes

Performance Basics - Bandwidth and Latency

- Bandwidth = Size of the network pipe
- Latency = Delay in sending packets

- Throughput = How fast your can send data, function of both bandwidth and latency (and other things)

Performance - Latency

- Latency = Propagation Delay + Transmission Delay + Queuing Delay
- Propagation = Distance/Speed Of Light (in Copper or Fiber)
- Transmit = Size/Bandwidth

Performance - Bandwidth - bits/second

Bits transmitted at a particular bandwidth can be regarded as having some width:
(a) bits transmitted at 1 Mbps (each bit $1 \mu \mathrm{~s}$ wide);
(b) bits transmitted at 2 Mbps (each bit $0.5 \mu \mathrm{~s}$ wide).

Packets are made of bits - each bit need some time to be processed at the router. This is transmission delay!

Propagation delay

Packets are made of bits. All bits must make it the next router before it can be forwarded.
Propagation delay $=50 \mathrm{~ms}$ (time it takes for a bit to go from A to B)
Transmission delay $=1 \mathrm{~ms}$ (time it takes for each bit to be converted into signal)

Performance - Queuing Delay

- R: link bandwidth (bps)
" L: packet length (bits)
- A: Average packet arrival rate
- Traffic delay = AL/R

AL/R~1
$A L / R \sim 0$

Performance - Example

- Breakout
- Calculate the total time required to transfer a 1000-KB file using 1 KB packets. Assuming bandwidth is 1.5 Mbps , the RTT of 50 ms , an initial $2 \times$ RTT of "handshaking" before any data is sent.

Delay $=$ Handshake + Transmission + Propagation + Queuing
Delay $=2 * 50 \mathrm{~ms}+(1000 * 1024 * 8) /(1.5 * 1000 * 1000)$ second + 50/2ms $+0=5.586$ seconds

- Propagation delay = First bit from sender to receiver
- Transmission delay = All bits on the wire

Bandwidth x Delay Product

Capacity of a network pipe = Bandwidth (bits) \times Two way Delay (Seconds) (a.k.a RTT or Round Trip Delay)

This is the amount of bits that a pipe can hold!

Bandwidth x Delay Product - Example

Bandwidth $=50 \mathrm{Mbps}$
Latency $=100 \mathrm{~ms}$
Bandwidth x Delay $=50 \times 10^{6} \times 100 \times 10^{-3}=5 \times 10^{6}$ bits $=625$ kilobytes

Bandwidth x Delay - Some more examples

Bandwidth $=54 \mathrm{Mbps}($ Wireless G)
RTT $=1 \mathrm{~ms}$
How much data can the pipe hold?
$\mathrm{BxD}=54 \times 10^{6} \times 1 \times 10^{-3}$

Bandwidth x Delay - Mars Rover

https://mars.nasa.gov/msl/mission/communications/
https://www.youtube.com/watch?v=NGgzq8eXZOQ

Breakout:

- Bit rate of curiosity: 32000bits/second
- Delay = 14 minutes each way
$-\mathrm{BxD}=32000 * 14 * 60 * 2$

And one more thing - Jitter

Also called Interpacket gap

- why does it happen (which artifact of packet switching?)
- why is it important (think video applications)?
- How do you solve this?

Performance - Example

" Calculate the total time required to transfer a 1000-KB file in the following case, assuming bandwidth is 1.5 Mbps , an RTT of 50 ms , a packet size of 1 KB data, and an initial $2 \times$ RTT of "handshaking" before data is sent. (Peterson-Davie Exercise 3, Chapter 1)

Delay $=$ Handshake + Transmission + Propagation + Queuing
Delay $=2 * 50 \mathrm{~ms}+(1000 * 1024 * 8) /(1.5 * 1000 * 1000)$ second + $50 / 2 \mathrm{~ms}+0=5.586$ seconds

- Propagation delay = First bit from sender to receiver

Performance - Example

" Calculate the total time required to transfer a 1.5-MB file in the following cases, assuming an RTT of 80 ms , bandwidth $=10 \mathrm{Mbps}$, a packet size of 1 KB data, and an initial $2 \times$ RTT of "handshaking" before data is sent:

Delay $=$ Handshake + Transmission + Propagation + Queuing

- Propagation delay = First bit from sender to receiver

What does it take to create a link?

- Common abstractions
- Why?

Reading Assignment

- Read Section 1.5:
- https://book.systemsapproach.org/foundation/performance.html \#performance
- ~30Mins

