CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

INTERNETWORKING sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

So far...

- we saw how to build a local network
- How do we interconnect different types of networks to build a large global network?

Why another layer?

Switching

- Switch
- A mechanism to interconnect links to form a large network
- Forward frames

Switches are Self learning!

- No configuration needed

- How do they construct such a table?

Collision domain 2

Switches are self learning!

- Inspect the source MAC address
- What is a mac address?
- Associate mac address and incoming interface
- Store this association for later use, (for some time)
- aging-timer

Switching Table

64
Preamble

addr addr

- To decide how to forward a packet, a switch consults a forwarding table

Destination, Port

A 3
B 0
C 3
D 3
E 2
F 1
G 0
H 0
Forwarding Table for Switch 2

Switching Table

- Unknown destination \rightarrow send out on all Interfaces (flooding)
- Skip the incoming interface

Destination, Port

A 3
B 0
C 3
D 3
E 2
F 1
G 0
H 0
Forwarding Table for Switch 2

Switching Table Algorithm

- Create the table first!
- For each packet
- If destination address in arriving segment
- Drop
- If destination is in another segment
- Forward
- If destination unknown
- Flood!

Switching Table Algorithm

- Send frame from C to F
- Switch $1 \rightarrow$
- Notes C is on Interface 3
- Floods
- Switch $2 \rightarrow$
- Notes C is on Interface 3
- Floods
- Host F replies
- Switch 2 notes F is on Interface 1
- Sends back over Interface 3
- Switch 1 notes F is on Interface 1
- Sends back over Interface 3
- Host c receives frame

Bridges

- Bridges and LAN Switches

- Class of switches that is used to forward packets between sharedmedia LANs such as Ethernets
- Known as LAN switches
- Referred to as Bridges
- Suppose you have a pair of Ethernets that you want to interconnect
- One approach is put a repeater in between them, physical limitations
- An alternative would be to put a node between the two Ethernets and have the node forward frames from one Ethernet to the other
- This node is called a Bridge
- A collection of LANs connected by one or more bridges is usually said to form an Extended LAN

Flooding over bridges causes forwarding loops

Spot the loop Why?

Loop

Spot the loop Why?

Solution? Spanning Tree

Think of the extended LAN as being represented by a graph that possibly has loops (cycles)

- A spanning tree is a sub-graph of this graph that covers all the vertices but contains no cycles
- Spanning tree keeps all the vertices of the original graph but throws out some of the edges
(a)

(b)

Example of (a) a cyclic graph; (b) a corresponding spanning tree.

How do we create a spanning tree?

- Properties: No loops
- How?
- Selectively flood
- Distributed algorithm, no coordination!
- Automatic reconciliation when failure occurs

How do we create a spanning tree?

- Properties: No loops
- How?
- Selectively flood
- Distributed algorithm, no coordination!
- Automatic reconciliation when failure occurs
- Switches elect a root
- The switch with the smallest identifier
- Each switch identifies if its interface is on the shortest path from the root
- Exclude if not

- Send message ($\mathrm{Y}, \mathrm{d}, \mathrm{X}$)
- From x, claims Y is the root, distance is d

How do we create a spanning tree?

- Message (Y, d, X) - (to, distance, from)
- 4 thinks it's the root
- Sends $(4,0,4)$ to 3 and 5
- Receives $(3,0,3)$ from 3
- Sets it to as the root since $3<4$
- Receives $(3,1,5)$ from 5
- Sees that this is a longer path to 3
- 2 hops vs direct path (1 hop)
- Removes 4-5 link from the tree

What does 4 do when it hears from 2?

- Message (Y, d, X) - (to, distance, from)
- 2 hears ($1,0,1$) from 1
- 2 sends ($1,1,2$) to 3
- 3 sends $(1,2,3)$ to 5 and 4
- 4 receives $(1,2,3)$ from 3
- 4 receives $(1,3,5)$ from 5
- Sets 1 as root (id=1 is <id=4)
- Prunes the $4-5$ path since it is 4 hops compared to 3 hops via 3

Failure and Downsides

- Even after the system has stabilized, the root continues to send messages periodically
- Other bridges continue to forward these messages
- When a bridge fails, the downstream bridges will not receive the configuration messages
- After waiting a specified period of time, they will once again claim to be the root and the algorithm starts again
- No load balancing

Virtual LAN (VLANs)

- LANs are on the same Ethernet segments
- Does not scale very well - too many wires
- How can we put multiple people in different locations on the same Ethernet segment (LAN)?
- How do we create multiple LANs over the same wire?

Why separate at all?

- LANs are on the same Ethernet segments! Security.
- Isolation - sensitive traffic vs normal traffic
- Containment of traffic - your for loop broke the internet

- How do we create multiple LANs over the same wire?

VLANs

- Switches specify which VLAN is accessible over which interface
- Each interface can have a VLAN color
- Each Mac address can have a interface color
- Add VLAN tag to the Ethernet header

Reading Assignment

Switching Basics - Chapter 3.1

- https://book.systemsapproach.org/internetworking/switching.html\#switching-basics
- Up to (but not including) Virtual Circuit Switching
- 20 minutes read
- Switched Ethernet, learning bridges, spanning tree algorithm, VLANs - Chapter 3.2
- https://book.systemsapproach.org/internetworking/ethernet.html\#switched-ethernet
- 30-40 minutes read

