CSC4200/5200 – COMPUTER NETWORKING

ETHERNET AND WIFI

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

- We have connected two machines using point to point wires
 - Encoded bits
 - Sent bits as Frames
 - Caught and corrected errors
 - Tuned efficiency and reliability using sliding window
- What happens when there are more than two machines?

Map of Hawaii

wikipedia

AlohaNET

- Connect University of Hawai'i's computers using wireless radio to main campus in Oahu
- Random access to radio channel
 - If you have data, send
 - If you hear someone else, collision! Resend "later"
- Fixed frequency channels
 - Shared medium

Abramson, Norman. "Development of the ALOHANET." IEEE transactions on Information Theory 31.2 (1985): 119-123. https://www.eng.hawaii.edu/about/history/alohanet/

Pure Aloha

- If you have data to send, send it.
- While transmitting, if you hear from anyone else, collision!
 Try retransmitting later.

Slotted ALOHA

Slotted ALOHA - Problems

CSMA – Improvement over Aloha

1) Carrier Sense

- Listen first -
 - If chennel is idle, send
 - If channel is busy, wait and send later
- Propagation delay
 - You may not hear others before it's too late!

Ethernet – Wire as Shared Medium

- Most successful local area networking technology of last 20 years.
- Developed in the mid-1970s by researchers at the Xerox Palo Alto Research Centers (PARC).
- For alohanet the medium was the atmosphere, for ethernet, coax cables

Ethernet – IEEE Standard 802.3

- How to allow many adaptors to send frames over the wire?
 - Access protocol

Ethernet

Ethernet repeater

Ethernet – Random Access

- How to allow many adaptors to send frames over the wire?
 - Random access
 - When you have data send at Full channel rate!
 - No coordination needed.
- If collision happens
 - Detect
 - Recover
 - Retransmit

CSMA/CD – Listen first, talk later!

- CSMA Carrier sense Multiple access
 - Listen if anyone is transmitting
 - Wait until carrier is free, do not interrupt others
 - What is the carrier here?
- CD Collision Detection
 - If you hear anyone while talking, collision, stop!
 - Monitor signal strength at the adapter
 - Higher than normal = collision
- Random wait before retransmitting
 - Why?

CSMA/CD – Ethernet. CS – wait until idle

•

- Channel idle trasmit
- Channel busy wait
- CD listen while transmitting
 - No collision: transmission successful
 - Collission: abort, send jam signal (32bit special sequence)
- Wait random time
 - Try again
 - After mth collision, $t = random(0, 2^{m} - 1),$
 - Wait t*512 bit times before retry

Ethernet Frame

Access Protocol for Ethernet

- The algorithm is commonly called Ethernet's Media Access Control (MAC).
 - It is implemented in Hardware on the network adaptor.
- Frame format
 - Preamble (64bit): allows the receiver to synchronize with the signal (sequence of alternating 0s and 1s).
 - Host and Destination Address (48bit each).
 - Hardcoded
 - Packet type (16bit): acts as demux key to identify the higher level protocol.
 - Data (up to 1500 bytes)
 - Minimally a frame must contain at least 46 bytes of data.
 - Frame must be long enough to detect collision.
 - CRC (32bit)

- Once an adaptor has detected a collision, and stopped its transmission, it waits a certain amount of time and tries again.
- Each time the adaptor tries to transmit but fails, it doubles the amount of time it waits before trying again.
- This strategy of doubling the delay interval between each retransmission attempt is known as *Exponential Backoff*.

- The adaptor first delays either 0 or 51.2 $\mu\text{s},$ selected at random
- If this effort fails, it then waits 0, 51.2, 102.4, 153.6 μs (selected randomly) before trying again;
 - This is k * 51.2 for k = 0, 1, 2, 3
- After the third collision, it waits k * 51.2 for $k = 0...2^3 1$ (again selected at random).
- In general, the algorithm randomly selects a k between 0 and 2ⁿ 1 and waits for k * 51.2 μs, where n is the number of collisions experienced so far.

- An adaptor may begin transmitting at/near the same time
 - Either because both found the line to be idle,
 - Or, both had been waiting for a busy line to become idle.
- Simultaneously transmitted frames collide
- Each sender can detect collisions (CDMA/CS)

Detection MUST happen during transmission

- Each transmits a 32-bit jamming sequence
- Will minimally send **96** bits (*runt* frame)
 - 64-bit preamble + 32-bit jamming sequence
 - Works if hosts are close to each other
- Worst case: transmitter may need to send up to **512** bits
 - Every Ethernet frame must be at least 512 bits (64 bytes) long.
 - 14 bytes of header + 46 bytes of data + 4 bytes of CRC

Worst-case scenario:

(a) A sends a frame at time *t*;

(b) A's frame arrives at B at time t + d;

(c) B begins transmitting at time t + d, collides with A's frame;

(d) B's runt (32-bit) frame arrives at A at time t + 2d.

(e) A is no longer transmitting – so, it does nothing!

Ethernet Minimum Frame Size

- Ethernet max length = 2500 meters
- RTT in worst case is 51.2 $\mu\text{s},$ which corresponds to the transmission time of 512 bits
- Each ethernet frame MUST be at least 512 bits

Experience with Ethernet

- Ethernets work best under lightly loaded conditions.
 - Under heavy loads, too much of the network's capacity is wasted by collisions.
- Most Ethernets are far shorter than 2500m with a round-trip delay of closer to 5 μs than 51.2 $\mu s.$
- Ethernets are easy to administer and maintain.
 - There are no switches that can fail and no routing and configuration tables that have to be kept up-to-date.
 - Cable is cheap, and only other cost is the network adaptor on each host.

Reading Assignment

- https://book.systemsapproach.org/direct/ethernet.html
 - About 30 minutes

CSC4200/5200 – COMPUTER NETWORKING

ETHERNET AND WIFI – PART II

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

- Wireless links transmit electromagnetic signals
 - Radio, microwave, infrared
- Wireless links all share the same "wire" (so to speak)
 - The challenge is to share it efficiently without unduly interfering with each other
 - Most of this sharing is accomplished by dividing the "wire" along the dimensions of frequency and space
- Exclusive use of a particular frequency in a particular geographic area may be allocated to an individual entity such as a corporation

Wireless Links

- Wireless technologies differ in a variety of dimensions
 - How much bandwidth they provide
 - How far apart the communication nodes can be
- Four prominent wireless technologies
 - Bluetooth
 - Wi-Fi (more formally known as 802.11)
 - WiMAX (802.16)
 - Cellular wireless (3/4/5G) 6G anyone?

Wireless Links

	Bluetooth (802.15.1)	Wi-Fi (802.11)	3G Cellular
Typical link length	10 m	100 m	Tens of kilometers
Typical data rate	2 Mbps (shared)	54 Mbps (shared)	Hundreds of kbps (per connection)
Typical use	Link a peripheral to a computer	Link a computer to a wired base	Link a mobile phone to a wired tower
Wired technology analogy	USB	Ethernet	DSL

Overview of leading wireless technologies

Wireless Links - Infrastructure

Wireless Links – Ad hoc

- Mesh or Ad-hoc network
 - Nodes are peers
 - Messages may be forwarded via a chain of peer nodes

Wireless Links – Characteristics

- Difference from wired?
 - Decreased signal strength (radio signals travel through the atmosphere)
 - Interference (Other signals interfere, microwave, phones, each other)
 - Multipath and noise
 - Reflects of objects

Can't hear you!!!!

Wireless Links – other problems

A and C can talk B and C can talk A and B can not!!! Interference at B

Hidden terminal

Signal Fading

WiFi – 802.11 Wireless Lan

802.11 – CSMA/Collision Avoidance (CA)

802.11: no collision detection! Why?

- It won't work anyway, hidden node, signal fading
- Avoid Collisions
- CSMA sense before transmitting

IEEE 802.11: Multiple Access

• Avoid collisions: 2⁺ nodes transmitting at same time

space

- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: *no* collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

- 1 if sense channel idle for DIFS then transmit entire frame (no CD)
 2 if sense channel busy then start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2
- if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)

DIFS = SIFS + (2 * Slot time)

Avoiding collisions – Reserve before Send

idea: allow sender to "reserve" channel rather than random access

- sender first transmits *small* request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: Addressing

802.11 frame: More

Wireless – How do nodes communicate?

Two modes:

- Infrastructure mode
- Ad-hoc mode

Wireless – Infrastructure Mode

A node (e.g., **G**) sends a Probe frame.

All APs within reach reply with a Probe Response frame.

The node selects one of the access points

The node sends that AP an Association Request frame.

The AP replies with an Association Response frame.

Wireless – Communication

Wireless – Handover

44

Ad-hoc Mode

Mobile Networks – 4G LTE

Reading Assignment

Wireless networks – Chapter 2.6

- https://book.systemsapproach.org/direct/wireless.html#wireless-networks
- 30-40 minutes read
- Mobile/Access Network
 - https://book.systemsapproach.org/direct/access.html#cellular-network
 - Ignore PON
 - Read from "While cellular telephone technology had its roots" to "in the process of transitioning to 5G (with the promise of a tenfold increase in data rates)."

