CSC4200/5200 - COMPUTER NETWORKING
RELIABLE DELIVERY - PART 1

Instructor: Susmit Shannigrahi
sshannigrahi@tntech.edu

)

Tennessee

TECH

mailto:sshannigrahi@tntech.edu

11 --..-I ..-

Data
Segments
nsport (TCP/UDP ot ToTEmEEmEEEEEEEEEEES ransport (TCP/UDP

Packets

Network (IP)

Network (IP)

Frames
Link (Ethernet) e ——— e | Link (Ethernet)
‘ Ethernet Interface

i

0

Bits (1010001) : : .
|

r [

(N B B BER B B NI

Frames - bag of bits

I , Bits

Node A | Adaptor Adaptor | Node B

Frames

[~ -

* Sending side — encapsulation, add error check bits, flow control
* Receiving side — extract frames, check for error, flow control

Two (2.5) Steps to a Link

* Create a physical medium between nodes (wire, fiber, air!)

* Make it carry bits

Encoding bits so that the other end understands (encoding)
Create bag of bits to create messages (framing)

Detect errors in frames (error detection)

Deal with lost frames (reliable delivery)

Create shared access to link, e.g, WiFi (media access)

Reliable Delivery

" Frames might get lost
* Too many bits lost
* Clock did not sync properly
* Error detected but the report got lost

" Can we build links that does not have errors?
* Not possible

" How about all those error correction stuff we learned?

* Can we add them to frames?
* We could, but think of the overhead
* What happens when the entire frame is lost?

Frames - bag of bits

I , Bits

Node A | Adaptor Adaptor | Node B

Frames

[~ -

* Sending side — encapsulation, add error check bits, flow control
* Receiving side — extract frames, check for error, flow control

Stop and Wait

Time

" Sender sends a frame, sets a
timeout (e.qg., 1 sec)

" Receiver receives the frame,
sends an ACK

" Sender
* sends the next frame on ACK

Sender

Timeout

Sender

Timeout

Timeout

Receiver

=

ACK

Receiver

_%(
=N
‘y

(c) Sender

(d)

* retransmits the same frame if timeout happens

" Spot the bugs in the protocol

Timeout

Timeout

Timeout

Timeout

Receiver

Frame

pCK

|
n
o
%

Receiver

Frame

~

Stop and Wait - Bugs (C and D)

I
(a) Sender Receiver (c) Sender Receiver
mr Ff‘ame [Frame
3 3
@ @ @
= = K £ cK
= = N® = N
Y i —
\
=
3
£ cK
(b) Sender Receiver (d) Sender Receiver
§ Fra B Fra
3 \ g me
E =
|_ .
5 =
3 = ACK
= CK —

Stop and Wait - How to fix the bug?

. :
Sender Receiver

Hint: Uniquely identify
each packet ACKO

1 bit sequence number
-0 orl

Alternate between 0 and

1
AcK ©

Time
)
d \2 /8 >
O Sy o

Stop and Wait
V2

Sender

s=end pkti ‘k‘
petS

row ACKOD ,/

s=end pktl “'-:L?"N\-i
pckd

rov ACKL .-f’//

szend pkti ‘K

a. Dperathon with o loss

Sender

s

send pktl -.J_:'_&}NN
Tov ACKED ey g
send pktl \-__‘

timeoat
resend pktl -\E"'lf\h-‘--*
pe
row ACK1
send pkti "-E'-EE_\-'
5]
”
€. Lot ACK

Recelver

row pktl
send ACED

rov pktl
send ACEL

row pktd
send ACED

Recelver

row pkti
zend ACKQ

rcw pktl
send ACKL

rev pktl
{detect
duplicate)
send ACKL

rew pkti
send ACKO

Sender

send pktl

row ACKO
send pktl

timeout
resend pktl

rov ACKL
send pktd

b. Lost packet

Sender

send pkti

rov ACED

send pktl
tin:ﬂut‘:

resend pktl

row ACKL
send pkti

row ACK]
do nothing

HhEEE‘*‘ahi
peES
Pty
h‘ﬁh*‘hgmn
By

v/

¥
2

\

Btm

\/

By

,ﬂ/_

%

plt

1'_:'.
i 2

X

pS

\

d. Premature timeout

Recelver

rocwy pktil
send ACKO

rcv pktl
send ACKL

rocwy pktl
send ACKO

Recelver

row pktl
send ACED

row pktl
send ACK]

row pkt 1
{detect duplicate)
send ACK]

row pktl
send ACKD

10

Stop and Wait - V2 Problems

] :
tlSender Receiver

" Sender sets a timeout to wait for an ACK

Frame o
* Too small - retransmissions ‘y
* Too large - long walit if frames are lost | .
m
" Solution: Aok
* Keep a running average of Round Trip Tir v 5
ameg
* EstimatedRTT = (1 — a) * EstimatedRTT + a *« Sampl ACKO

Timeout = 2*¥EstimatedRTT
Value of a = 0.125

Where does a come from? RFC 6928 (for now) 11

Stop and Wait - How to fix the bug?

. i
Sender Receiver

Hint: Uniquely identify
each packet

Time

g g \z /&
§\2 38
o - QC}

poK !

ACK ©

12

Stop and Wait - How does it perform?

- Bandwidth (R)= 1Gbps gyl

» Packet size (L) = 1000 bytes

a. A stop-and-wait protocol in operation

e RTT = 30ms

Kurose/Ross

e 1. = L/R =8000bits/10°bits/sec =

trans

8microsecond

e] =15ms

prop

 Total Delay = 15.008 ms

13

Stop and Wait - How does it perform?

I t0 t0+15.008
e Sender transmits for only 0.008 ms in N
30.008ms = J
» Utilization = 0.008/30.008 = 0.00027 tO*jjfifwmmwf*”-o‘)*g
* One bit at a time
* Worse when loss happens!
Kurose/Ross

14

Sliding window to the rescue!

—— Utilization = 0.008*3/30.008 =

0.00079 (3 times increase)

Sender Receiver

@ﬁﬁ}
First bit of first packet

transmitted, t =0

Last bit of first packet —
transmitted, t = L/R

— First bit of first packet arrives

— Last bit of first packet arrives, send ACK
— Last bit of 2nd packet arrives, send ACK
— Last bit of 3rd packet arrives, send ACK

RTTH

ACK arrives, send next packet,——
t=RTT+ /R

b. Pipelined operation

15

Sliding window to the rescue!

—— Utilization = 0.008*3/30.008 =

0.00079 (3 times increase)

Sender Receiver

@ﬁﬁ}
First bit of first packet

transmitted, t =0

Last bit of first packet —
transmitted, t = L/R

— First bit of first packet arrives

— Last bit of first packet arrives, send ACK
— Last bit of 2nd packet arrives, send ACK
— Last bit of 3rd packet arrives, send ACK

RTTH

ACK arrives, send next packet,——
t=RTT+ /R

b. Pipelined operation

16

Sliding window - How does this work?

Sliding Window Size
< SWS

f }

LAR LFS

Last Frame Acked Last Frame Sent

<RWS

! }

LFR LAF
Last Frame Received Last Acceptable Frame

Outstanding
requests - SWS
LFS - LAR <= SWS

Sender

17

Sliding window -
Go-Back-N

e Can transmit N bits before A

* See the problem?
e Can not move forward

until all previous packets are

acknowledged

Sender

send pktl

send pktl

send pkt2

CK

send pkt3

(wait)

rov ACEOD
send pktd
rcv ACE1
send pkth

- pkt2 timeout
send pkt2
send pkt3
send pktd
send pkthH

Receiver

rov pkto
send ACED

rcv pktl
send ACEKl

rov pkt3, discard
send ACEl

rov pktd, discard
send ACEKl

rocv pktb, discard
send ACEL

rov pkt2, deliver
send ACEZ
rov pkt3, deliver

send ACE3

18

Sliding Window - Selective Repeat

http://www.exa.unicen.edu.ar/catedras/
: _ comdatl/material/
* Recelver: Filminas3_Practico3.swf

 Individually acks all packets

» Buffers packets as necessary

« Buffer packets until lost packets are
received

* Sender:
* Resend packets (only) for which ACK
not received
* Timer for each unACKed packet
 Can send only n packets

19

Sliding window -
Selective Repeat

UUUUEiiﬁiﬂﬂuﬁﬁﬁﬁﬁumumuumu

aaCCDARGROAROAAT:

[
Window size
N

b. Receiver view of sequence numbers

Key:

Already
ACK'd

Sent, not
yet ACK'd

Key:

Ot of order
(buffered) but

already ACK'd

Expected, n
yet recewed

Accepiable

fwithin
window)

Mot usable

20

SIiding Window - Sender Receiver

] pkt0 sent
Selective Repeat ::5::6755
pktl sent pkt0 rovd, delivered, ACEKO sent
01234567829 012 3454678279
|

— pkt2 sent pktl rcvd, delivered, ACKl sent

0123456789 B 01234567809
{loss)

pkt3 sent, window full
01234567829

pkt3 reovd, buffered, ACE3 sent

ACKO rcvd, pkt4 sent 012345467829
0123 4567829

ACK1 rcvd, pkt5 sent pktd4 reovd, buffered, ACE4 sent
012 3 4546 789 012 345467829

pkt5 reovd; buffered, ACE5 sent

L pkt2 TIMEOUT, pkt2 0139884k 6 7 8 9
resent

012345467829

pkt2 recwvd, pkt2,pkt3,pktd, pkt5
delivered, ACEZ sent

01234567829

ACE3 rcvd, nothing sent
012 345467829

Sliding window -
Selective Repeat - LOSS

 Sender: * Receiver, packet (n)

 Data received, if next to-be-sent-

packet’'s seq # within window, -
recv_base + N - 1, send ack (n)
send. Else, buffer or return to . Out of order: buffer

application. * In-order or closes gap — deliver to
application

* Sequence between recev base,

 Timeout: Each packet has its own
timer. resend the packet » Packet within <recv_base-N,

. _ recv base -1>, ACK(n)
« ACK received: Mark received, —

Advance window to next unacked

seq # if ack for send_base * Otherwise: Ignore

22

Issues with Sliding Window Protocol

* When timeout occurs, the amount of data in transit decreases
- Since the sender is unable to advance its window

* When the packet loss occurs, this scheme is no longer keeping the
pipe full

- The longer it takes to notice that a packet loss has occurred, the more severe
the problem becomes

* How to improve this
- Negative Acknowledgement (NAK)
- Additional Acknowledgement
- Selective Acknowledgement (SAK)

23

Next Steps

 Reading Material:

* https://book.systemsapproach.org/direct/reliable.html#reliable-tr
ansmission

You may skip the coding part
« About 20 minutes

 https://en.wikipedia.org/wiki/Go-Back-N_ ARQ
* 5 minutes

24

https://book.systemsapproach.org/direct/reliable.html#reliable-transmission
https://book.systemsapproach.org/direct/reliable.html#reliable-transmission
https://en.wikipedia.org/wiki/Go-Back-N_ARQ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Issues with Sliding Window Protocol
	Slide 24

