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RELIABLE DELIVERY – PART 1

Instructor: Susmit Shannigrahi
sshannigrahi@tntech.edu
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Frames – bag of bits 

● Sending side – encapsulation, add error check bits, flow control
● Receiving side – extract frames, check for error, flow control
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Two (2.5) Steps to a Link

● Create a physical medium between nodes (wire, fiber, air!)

● Make it carry bits

● Encoding bits so that the other end understands (encoding)
● Create bag of bits to create messages (framing)
● Detect errors in frames (error detection)
● Deal with lost frames (reliable delivery)
● Create shared access to link, e.g, WiFi (media access)
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Reliable Delivery

 Frames might get lost
● Too many bits lost
● Clock did not sync properly
● Error detected but the report got lost

 Can we build links that does not have errors?
● Not possible

 How about all those error correction stuff we learned?
● Can we add them to frames?
● We could, but think of the overhead
● What happens when the entire frame is lost?
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Frames – bag of bits 

● Sending side – encapsulation, add error check bits, flow control
● Receiving side – extract frames, check for error, flow control
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Stop and Wait

 Sender sends a frame, sets a 
timeout (e.g., 1 sec)

 Receiver receives the frame, 
sends an ACK

 Sender 
● sends the next frame on ACK
● retransmits the same frame if timeout happens

 Spot the bugs in the protocol
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Stop and Wait – Bugs (C and D)
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Stop and Wait – How to fix the bug?

Hint: Uniquely identify 
each packet

1 bit sequence number 
- 0 or 1

Alternate between 0 and 
1
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Stop and Wait 
v2
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Stop and Wait  - V2 Problems

 Sender sets a timeout to wait for an ACK 
● Too small – retransmissions
● Too large – long wait if frames are lost

 Solution:
● Keep a running average of Round Trip Times

● EstimatedRTT = (1 – ) • EstimatedRTT +  • SampleRTTα α

● Timeout = 2*EstimatedRTT
● Value of  = 0.125 α

● Where does  come from? RFC 6928 (for now)α

t1

t2
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Stop and Wait – How to fix the bug?

Hint: Uniquely identify 
each packet
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Stop and Wait – How does it perform?

● Bandwidth (R)= 1Gbps

● Packet size (L) = 1000 bytes

● RTT = 30ms

● Ttrans = L/R = 8000bits/109bits/sec = 
8microsecond

● Tprop = 15ms
● Total Delay = 15.008 ms

Kurose/Ross
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Stop and Wait – How does it perform?

● Sender transmits for only 0.008 ms in 
30.008ms

● Utilization = 0.008/30.008 = 0.00027

● One bit at a time

● Worse when loss happens!

ACK

Kurose/Ross

t0 t0+15.008

t0+30.008 t0+15.008
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Sliding window to the rescue!
Utilization = 0.008*3/30.008 = 
0.00079 (3 times increase)
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Sliding window to the rescue!
Utilization = 0.008*3/30.008 = 
0.00079 (3 times increase)
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Sliding window – How does this work?

Outstanding 
requests → SWS
LFS - LAR <= SWS

Last Frame SentLast Frame Acked

Sliding Window Size

Last Acceptable FrameLast Frame Received

Sender
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Sliding window - 
Go-Back-N

● Can transmit N bits before ACK

● See the problem?
● Can not move forward

until all previous packets are
acknowledged
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Sliding Window - Selective Repeat

● Receiver:
● Individually acks all packets
● Buffers packets as necessary
● Buffer packets until lost packets are 

received

● Sender:
● Resend packets (only) for which ACK 

not received
● Timer for each unACKed packet
● Can send only n packets

http://www.exa.unicen.edu.ar/catedras/
comdat1/material/
Filminas3_Practico3.swf
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Sliding window - 
Selective Repeat
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Sliding window - 
Selective Repeat
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Sliding window - 
Selective Repeat - LOSS

● Sender:
● Data received, if next to-be-sent-

packet’s seq # within window, 
send. Else, buffer or return to 
application.

● Timeout: Each packet has its own 
timer. resend the packet

● ACK received: Mark received,
Advance window to next unacked 
seq # if ack for send_base

● Receiver, packet (n)

● Sequence between recev_base, 
recv_base + N - 1, send ack (n)

● Out of order: buffer
● In-order or closes gap – deliver to 

application

● Packet within <recv_base-N, 
recv_base -1>, ACK(n)

● Otherwise: Ignore
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Issues with Sliding Window Protocol

● When timeout occurs, the amount of data in transit decreases
– Since the sender is unable to advance its window

● When the packet loss occurs, this scheme is no longer keeping the 
pipe full
– The longer it takes to notice that a packet loss has occurred, the more severe 

the problem becomes

● How to improve this
– Negative Acknowledgement (NAK)
– Additional Acknowledgement
– Selective Acknowledgement (SAK)
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Next Steps

● Reading Material:
● https://book.systemsapproach.org/direct/reliable.html#reliable-tr

ansmission

You may skip the coding part
● About 20 minutes 

● https://en.wikipedia.org/wiki/Go-Back-N_ARQ
● 5 minutes

https://book.systemsapproach.org/direct/reliable.html#reliable-transmission
https://book.systemsapproach.org/direct/reliable.html#reliable-transmission
https://en.wikipedia.org/wiki/Go-Back-N_ARQ
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