
CSC4200/5200 – COMPUTER NETWORKING

RELIABLE DELIVERY – PART 1

Instructor: Susmit Shannigrahi
sshannigrahi@tntech.edu

mailto:sshannigrahi@tntech.edu

2

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

3

Frames – bag of bits

● Sending side – encapsulation, add error check bits, flow control
● Receiving side – extract frames, check for error, flow control

4

Two (2.5) Steps to a Link

● Create a physical medium between nodes (wire, fiber, air!)

● Make it carry bits

● Encoding bits so that the other end understands (encoding)
● Create bag of bits to create messages (framing)
● Detect errors in frames (error detection)
● Deal with lost frames (reliable delivery)
● Create shared access to link, e.g, WiFi (media access)

5

Reliable Delivery

 Frames might get lost
● Too many bits lost
● Clock did not sync properly
● Error detected but the report got lost

 Can we build links that does not have errors?
● Not possible

 How about all those error correction stuff we learned?
● Can we add them to frames?
● We could, but think of the overhead
● What happens when the entire frame is lost?

6

Frames – bag of bits

● Sending side – encapsulation, add error check bits, flow control
● Receiving side – extract frames, check for error, flow control

7

Stop and Wait

 Sender sends a frame, sets a
timeout (e.g., 1 sec)

 Receiver receives the frame,
sends an ACK

 Sender
● sends the next frame on ACK
● retransmits the same frame if timeout happens

 Spot the bugs in the protocol

8

Stop and Wait – Bugs (C and D)

9

Stop and Wait – How to fix the bug?

Hint: Uniquely identify
each packet

1 bit sequence number
- 0 or 1

Alternate between 0 and
1

10

Stop and Wait
v2

11

Stop and Wait - V2 Problems

 Sender sets a timeout to wait for an ACK
● Too small – retransmissions
● Too large – long wait if frames are lost

 Solution:
● Keep a running average of Round Trip Times

● EstimatedRTT = (1 –) • EstimatedRTT + • SampleRTTα α

● Timeout = 2*EstimatedRTT
● Value of = 0.125 α

● Where does come from? RFC 6928 (for now)α

t1

t2

12

Stop and Wait – How to fix the bug?

Hint: Uniquely identify
each packet

13

Stop and Wait – How does it perform?

● Bandwidth (R)= 1Gbps

● Packet size (L) = 1000 bytes

● RTT = 30ms

● Ttrans = L/R = 8000bits/109bits/sec =
8microsecond

● Tprop = 15ms
● Total Delay = 15.008 ms

Kurose/Ross

14

Stop and Wait – How does it perform?

● Sender transmits for only 0.008 ms in
30.008ms

● Utilization = 0.008/30.008 = 0.00027

● One bit at a time

● Worse when loss happens!

ACK

Kurose/Ross

t0 t0+15.008

t0+30.008 t0+15.008

15

Sliding window to the rescue!
Utilization = 0.008*3/30.008 =
0.00079 (3 times increase)

16

Sliding window to the rescue!
Utilization = 0.008*3/30.008 =
0.00079 (3 times increase)

17

Sliding window – How does this work?

Outstanding
requests → SWS
LFS - LAR <= SWS

Last Frame SentLast Frame Acked

Sliding Window Size

Last Acceptable FrameLast Frame Received

Sender

18

Sliding window -
Go-Back-N

● Can transmit N bits before ACK

● See the problem?
● Can not move forward

until all previous packets are
acknowledged

19

Sliding Window - Selective Repeat

● Receiver:
● Individually acks all packets
● Buffers packets as necessary
● Buffer packets until lost packets are

received

● Sender:
● Resend packets (only) for which ACK

not received
● Timer for each unACKed packet
● Can send only n packets

http://www.exa.unicen.edu.ar/catedras/
comdat1/material/
Filminas3_Practico3.swf

20

Sliding window -
Selective Repeat

21

Sliding window -
Selective Repeat

22

Sliding window -
Selective Repeat - LOSS

● Sender:
● Data received, if next to-be-sent-

packet’s seq # within window,
send. Else, buffer or return to
application.

● Timeout: Each packet has its own
timer. resend the packet

● ACK received: Mark received,
Advance window to next unacked
seq # if ack for send_base

● Receiver, packet (n)

● Sequence between recev_base,
recv_base + N - 1, send ack (n)

● Out of order: buffer
● In-order or closes gap – deliver to

application

● Packet within <recv_base-N,
recv_base -1>, ACK(n)

● Otherwise: Ignore

23

Issues with Sliding Window Protocol

● When timeout occurs, the amount of data in transit decreases
– Since the sender is unable to advance its window

● When the packet loss occurs, this scheme is no longer keeping the
pipe full
– The longer it takes to notice that a packet loss has occurred, the more severe

the problem becomes

● How to improve this
– Negative Acknowledgement (NAK)
– Additional Acknowledgement
– Selective Acknowledgement (SAK)

24

Next Steps

● Reading Material:
● https://book.systemsapproach.org/direct/reliable.html#reliable-tr

ansmission

You may skip the coding part
● About 20 minutes

● https://en.wikipedia.org/wiki/Go-Back-N_ARQ
● 5 minutes

https://book.systemsapproach.org/direct/reliable.html#reliable-transmission
https://book.systemsapproach.org/direct/reliable.html#reliable-transmission
https://en.wikipedia.org/wiki/Go-Back-N_ARQ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Issues with Sliding Window Protocol
	Slide 24

