Named Data Networking (NDN)

Introduction to NDN Susmit Shannigrahi sshannigrahi@tntech.edu

Internet

2

A great success!!!

2020 This Is What Happens In An Internet Minute

http://www.visualcapitalist.com/internet-minute

And That's Just the Web

Remote Sensing

IoT

AR/VR

Smart grid

So we can agree things are great! Well...

Volume is not the only problem – TCP/IP model is too!

(a) .001% loss

Google Wants To Speed Up The Web With Its QUIC Protocol

Frederic Lardinois @fredericl / 1:30 pm CDT • April 18, 2015

Comment

Disrupt SF 2019 Startups Apps Gadgets Videos Audio Extra Crunch Newsletters Events Advertise — Crunchbase More Search Q

Apple Enterprise Transportation Facebook privacy

Image Credits: Flickr under a CC BY 2.0 license.

You may have never heard of it, but if you are a Chrome user, chances are you've used **Google's** (QUIC protocol already. As Google disclosed this week, about half of all requests from Chrome to Google's servers are now served over

Tierney, Brian, et al. "Efficient data transfer protocols for big data." 2012 IEEE 8th International Conference on E-Science. IEEE, 2012.

7

>20ms

Security – Non existent

 ars TECHNICA
 biz & it
 tech science policy cars gaming & culture store forums
 subscribe
 Q ≡ signine

 BORDER GATEWAY PROTOCOL - How 3ve's BGP hijackers eluded the
 Internet—and made \$29M

3ve used addresses of unsuspecting owners—like the US Air Force.

DAN GOODIN - 12/21/2018, 11:30 AM

Security – DDoS

Nothing prevents anyone from sending you unsolicited data

Security – Secure Tunnels (SSL/TLS)

Secures the medium (the link), not the data

You can not reuse data

Undetectable if data is compromised at source or destination

So, the Internet

Does not perform very well for

- * large data (science)
- * small data (IoT)
- * distributed data (CDNs)
- * real time communication (AR/VR)
- * secure communication

Data volume

Security

Network Management and Monitoring

Deployment

Latency

Lack of support for new methods

Named Data Networking (NDN)

http://named-data.net 🛛 http://github.com/named-data

IP

NDN

Host-centric addressing

Data-centric addressing

Architecture, rather than Protocols

- A clean slate future Internet architecture
 - Emphasis on what (named content), not where (hosts)

Is It Deployed?

- Deployable now as an overlay (TCP, UDP) or on Layer
 2 transport
- C, Java, Python, Javascript libraries
- http://github.com/named-data
- Testbed of 15 routers, including 5 on Internet2 / GENI
- <u>http://ndnmap.arl.wustl.edu/</u>

Telephone Network was the 1st Communication System

Focus on building and connecting the wires

IP Revolutionized the Communication System

Internet Protocol (RFC791): Focused on delivering packets to destination *host*

NDN: Focus on Data

Abstracting away the notion of "host" Superset of host-to-host communication model

Two Problems with Current Internet

- Focus is on end-point communication
 - Artifact of original thinking: share resources, not content
 - Login to fast machine, access to the tape drive, the printer, etc.
- Security
 - To get data, you build a secure path
 - Once you authenticated with the server, you trust the content

New Communication Paradigm

- Users today care about *content*, not the servers
- Accessing the server is a by-product of the need to retrieve the desired content
 If the server is down, no access to the content
- But what if the content was available from other places (e.g., my neighbor)?
- We do a lot of this already with HTTP
 URLs, CDNs, caches, etc.

Two Focal Points in NDN

- Focus on the what not the where
- Secure the data not the container

NDN Operation

- Interest packets
- Data packets
- Enhanced Forwarding
 - Pending Interest Table (PIT)- new!
 - Content Store (CS) new!
 - Forwarding Information Base (FIB) similar to IP

The IPv4 Datagram Format

Two Simple Changes

Named Data Networking does not have sources

Delete the Destination. Named Data Networking does not have destinations

NDN Packets

Interest Packet

Data Packet

Content Name: Identifies the data I want to receive

Selector: identifier publisher, etc

Nonce

Content Name: Identifies the data in this packet

Signature: Required for all packets

Data

- Interest: Content Name (CN) = X
- Forward interest towards Publisher (X)
- Mark incoming faces as wanting X (lay down breadcrumbs)
- Merge same interests for X

- Data: Content Name (CN) = X
 Forward Data back to where interests came from
 - Follow the breadcrumbs back to requestors
 - Delete breadcrumbs
- Duplicate at appropriate routers
- Cache data at each router

Forwarding Process

Comparison with IP Packet Forwarding

NDN Interest Forwarding

NDN Data Forwarding

Summary

- Route on content names
- Content from anywhere: not just the producer
- "Breadcrumbs" & de-duplication of requests
- Cache retrieved data in Content Store (CS)

Example: Delivering Mail

Can it Scale?

- WUSTL Results for NDN Forwarding
 - (in submission)
- Software router prototype
- Preliminary hardware design
- Multi-gigabit forwarding rates for:
 - Name-based FIBs, based on real world URLs, of 1-3M entries;
 - Synthetic FIBs, based on model of future namespace, of up to 1B entries.

http://www.cidr-report.org

All	New	Deleted	Transferred	TLD
144,040,087	155,151	136,956	239,097	All TLDs
107,508,504	115,331	100,189	194,269	.COM
15,033,351	16,353	13,437	20,649	.NET
10,204,641	9,829	7,165	10,224	.ORG
7,185,246	8,227	12,882	8,916	.INFO
2,305,965	3,715	1,875	2,895	.BIZ
1,802,380	1,696	1,408	2,144	.US

http://www.whois.sc/internet-statistics

The Power of Naming

- Naming can fetch the data transparently regardless of location
 - Requests can go to appropriate place
- Naming can result in generation of new data
 - Can ask for data that does not yet exist!

Experiment Topology

Experiment Setup

- Two servers and two clients
- Servers at CSU, clients at Memphis and St. Louis
- Nodes exchange routes using OSPFN

Announcements

- Servers have .nc files, each .nc file have one month's data
- Route announcements in network are based on filename
- Each server advertises one prefix for a file
 - Server having file pr_19020101.nc announces /../pr_1902/01/
- OSPFN propagates announcement

Server1

Dynamic Data Generation

- Servers parse interest names and find the date range
- Pass date range to ncks tool.
- ncks tool extracts data, writes to file and returns the filename to server
- Server sends back file

An Example Data Request

Server1

- Want data for Jan 30 Feb 02
- Client expresses interests, one for each day
- Interests for Jan 30-31 go to server1
- Interests for Feb 01-02 go to server2
- Data is dynamically generated and sent back
- Client consolidates reply and writes to disk

Repeat Requests and Cache

- If asked for same data, requests are answered from cache
- Saves transmission time, extraction time and transfer time

Partially Cached Data

- What happens if we ask for Jan 29 Feb 2 ?
- Request for data not cached goes to server
- Rest is answered from cache

Collaborations

- A asked for data for Jan 30- Feb 2.
- B later asks for same data.
- B receives data from cache.

NDN and Anonymity

- NDN has no endpoint addresses names in interests and data packets are ephemerally associated with incoming/outgoing faces
- Info retrievable at a router:
 - PIT interest/data names and associated face information; inmemory, ephemeral (~RTT)
 - Content Store data names, no face information; in-memory, ephemeral (~nRTT)
 - Attached storage (repo) data names, no face information; on non-volatile memory, long-lived
- Individual endpoints, however, engaged in a private conversation *can still be identified* by their names

Recap

- In NDN routers hold ephemeral name-tointerface associations – no e2e associations
- Vantage point matters
- Caching may satisfy interests before they reach your vantage point
- Multipath may divert interests away from your vantage point
- But private parties still visible on the wire

DDoS Attacks

- Classic DDoS is not possible
 Cannot send packets without interests
- However, can still do Interest packet flooding
 - Standard push-back defenses still possible
 - Smart decisions based on parsing names
- In general, NDN raises the bar

Congestion Control

- Use lessons learned from TCP mechanisms carry over
 - Define congestion window just like TCP
 - Send interests that fall within the congestion window
 - Use similar AIMD behavior
- Note that receiver window is not needed – receiver pulls what it wants

Key Distribution

- No single way to distribute keys
 - Key distribution outside the architecture
 - Certificates, consensus, out-of-band, applications are free to implement anything that works
 - Packets tell you how to get the key (or may even carry the key with them)
- Key delegation
 - Example: <u>www.nytimes.com</u> can delegate keys to editors for <u>www.nytimes.com/sports</u>, <u>www.nytimes/com/business</u>, etc.

Conclusions

- NDN preserves the hourglass shape of IP but with names at the narrow waist
- Architecture focused on the what, not the where
- New forwarding mechanisms enable multipath, multicast and other group operations
- All content is signed
- More at http://www.named-data.net/

BACKUP SLIDES

Naming the Content

- Client requests <u>www.nytimes.com/today</u>
- Interests go out for each packet:
 - www.nytimes.com/today/packet1
 - www.nytimes.com/today/packet2

. . .

- Routers forward based on <u>www.nytimes.com</u> prefix (longest prefix match, just like IP)
- Data is pulled and cached one packet at a time
- Each packet contains information on how to retrieve the signing key

Communication by Names

- Producer announces data prefix
 - e.g., www.nytimes.com/
- Consumer sends interest
- Producer replies with data

Interests only go so far until they find the data Cached data can satisfy requests efficiently

- Interests may be forwarded opportunistically to many destinations
 - Strategy Layer
- Data may be concurrently retrieved from multiple places

Transparency in NDN

With a search warrant for a router, what can you discover about an ISP's users?

• Assumption: warrant covers volatile and non-volatile memory

Network Security in IP: why so Hard?

IP identifies interfaces/hosts

•Current attempts aim at:

- Securing the box
- Securing the channel
- •Securing an IP network by firewall

•Securing the perimeter is hard

30 Years Down the Road IP changed the world

So Why a New Architecture?

- What are the problems with the current Internet?
- Are they worth re-designing the network?
- With the current architecture being so entrenched, can we even deploy a new one?

Evolution of Communication Abstraction

NDN: Focusing on retrieving data

Abstracting away the notion of "node" Conserve at a fine all the mean of a server was in a the

A New Way to Think About Security

• Secure the Content, Not the Channel!

- SSL, VPN, ssh tunnel, ToR, etc all focus on providing a secure channel
- Users don't really care if the channel is secure, focus on the content
- Require Authentication on <u>All</u> Content
 - Security is not an option, its part of architecture
- Encrypt the content if you don't trust the channel
 - Encryption is optional and applied where needed