CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

NETWORK SECURITY
sshannigrahi@tntech.edu

How do you send secure the cat

 picture?

Network Security

Goals

- understand principles of network security:
- cryptography and its many uses beyond "confidentiality"
- authentication
- message integrity
- security in practice:
- firewalls and intrusion detection systems
- security in application, transport, network, link layers

What is network security?

confidentiality: only sender, intended receiver should "understand" message contents

- sender encrypts message
- receiver decrypts message
authentication: sender, receiver want to confirm identity of each other
message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
access and availability: services must be accessible and available to users

Friends and enemies: Alice, Bob, Trudy

- Bob and Alice want to communicate "securely"
- Trudy may intercept, delete, add messages

Where do we need security?

- ... well, real-life Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
- other examples?

Some example problems

- eavesdrop: intercept messages
- actively insert messages into connection
- impersonation: can fake (spoof) source address in packet (or any field in packet)
- hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
- denial of service: prevent service from being used by others (e.g., by overloading resources)

The Principle of cryptography

Breaking an encryption scheme

- cipher-text only attack: Trudy has ciphertext she can analyze
- two approaches:
- brute force: search through all keys
- statistical analysis
- known-plaintext attack: someone has plaintext corresponding to ciphertext
- Enigma machine
- Weather and Hilter in same position in every message
- chosen-plaintext attack: someone can get ciphertext for chosen plaintext
- The battle of midway
- Planning to attack AF
- AF has water supply problem
- Repeat - AF has water supply problems

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric) key: K e.g., key is knowing substitution pattern in mono alphabetic substitution cipher - caesar cypher Q: how do Bob and Alice agree on key value?

Simple encryption scheme

substitutioh cipher: substituting one thing for another

- monoalphabetic cipher: substitute one letter for another

e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Encryption key: mapping from set of 26 letters to set of 26 letters

A more sophisticated encryption approach

- n substitution ciphers, $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{n}}$
- cycling pattern:
- e.g., $n=4: M_{1}, M_{3}, M_{4}, M_{3}, M_{2} ; \quad M_{1}, M_{3}, M_{4}, M_{3}, M_{2} ;$.
- for each new plaintext symbol, use subsequent subsitution pattern in cyclic pattern
- dog: d from M_{1}, o from M_{3}, g from M_{4}

Encryption key: n substitution ciphers, and cyclic pattern

- key need not be just n-bit pattern

Symmetric key crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is DES?
- DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
- no known good analytic attack
- making DES more secure:
- 3DES: encrypt 3 times with 3 different keys

Symmetric key crypto: DES

- DES operation
 initial permutation
 16 identical "rounds" of function application, each using different 48 bits of key
 final permutation

How secure is DES - DES Challenges

- The first challenge began in 1997 and was solved in 96 days
- DES Challenge II-1 in 39 days in early 1998.
-"Many hands make light work."
- DES Challenge II-2 - 56 hours in July 1998,
-"It's time for those 128-, 192-, and 256-bit keys."
- DES Challenge III
- 22 hours 15 minutes in January 1999,
- "See you in Rome (second AES Conference, March 22-23, 1999)"

AES: Advanced Encryption Standard

- Symmetric-key NIST standard, replaced DES (Nov 2001)
- processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES

Public Key Cryptography

symmetric key crypto

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?
-public key crypto
- radically different approacd [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- public encryption key known to all
- private decryption key known only to receiver

Public key cryptography

Public key encryption algorithms

requirements:

(1) need k_{B}^{\prime} () and $k \cdot()$ such that

$$
K_{B}^{-}\left(K_{B}^{+}(m)\right)=m
$$

(2) given public key $\mathrm{K}_{\mathrm{B}}^{+}$it should be impossible to compute private key K ${ }_{B}^{-}$

RSA: Rivest, Shamir, Adelson algorithm

Prerequisite: modular arithmetic

- $x \bmod n=$ remainder of x when divide by n
- facts:
$[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$ $[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$ $[(a \bmod n) *(b \bmod n)] \bmod n=(a * b) \bmod n$
- thus
$(a \bmod n)^{d} \bmod n=a^{d} \bmod n$
- example: $x=14, n=10, d=2$:
$(x \bmod n)^{d} \bmod n=4^{2} \bmod 10=6$
$x^{d}=14^{2}=196 \quad x^{d} \bmod 10=6$

RSA: getting ready

- message: just a bit pattern
- bit pattern can be uniquely represented by an integer number
- thus, encrypting a message is equivalent to encrypting a number.

example:

- $m=10010001$. This message is uniquely represented by the decimal number 145 .
- to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

RSA: Creating public/private key pair

1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
2. compute $n=p q, \quad z=(p-1)(q-1)$
3. choose e (with $e<n$) that has no common factors with z (e, z are "relatively prime").
4. choose d such that ed-1 is exactly divisible by z. (in other words: ed mod $z=1$).
5. public key is $\underbrace{(n, e)}_{K_{B}^{+}}$. private key is $\underbrace{(n, d)}_{K_{B}^{-}}$.

RSA: encryption, decryption

0. given (n, e) and (n, d) as computed above
1. to encrypt message $m(<n)$, compute

$$
c=m^{e} \bmod n
$$

2. to decrypt received bit pattern, c, compute $m=c^{d} \bmod n$

$$
\begin{array}{r}
\text { magic } \\
\text { happens! }
\end{array} \quad m=(\underbrace{\left.m^{e} \bmod n\right)}_{c}{ }^{d} \bmod n
$$

RSA example:

$$
\begin{aligned}
& \text { Bob chooses } p=5, q=7 \text {. Then } n=35, z=24 . \\
& e=5 \text { (so e, } z \text { relatively prime). } \\
& d=29 \text { (so ed-1 exactly divisible by } z \text {). }
\end{aligned}
$$

encrypting 8-bit messages.

RSA: another important property

The following property will be very useful later:

$$
{ }_{B}^{-K}\left(K_{B}^{+}(m)\right)=m=K_{B}^{+}\left(K_{B}^{-}(m)\right)
$$

use public key first, followed by private key
use private key first, followed by public key

result is the same!

Why is RSA secure?

- suppose you know Bob’s public key (n,e). How hard is it to determine d?
- essentially need to find factors of n without knowing the two factors p and q
- fact: factoring a big number is hard

Digital signatures

cryptographic technique analogous to hand-written signatures:

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital signatures

simpre argital signature for message m:

- Bob signs m by encrypting with his private key K_{B}, crēating "signed" message, $\mathrm{K}_{\mathrm{B}}(\mathrm{m})$

Bob's message, m
Dear Alice
Oh, how I have missed you. I
think of you all the time! ... (blah
blah blah)
Bob

whoever signed m must have used Bob's private key.

