CSC4200/5200 – COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

GLOBAL INTERNET

sshannigrahi@tntech.edu

- PA2 will post tomorrow due March 31st.
- Those who asked for PA1 extension email me the code.
- Homework2 will post next week.
- Second exam end of March.

Back to Addressing

- A 32 bit number in quad-dot notation
- Identifies an Interface
 - A host might have several interfaces!!!
- **129**.82.138.254

Subnets Revisited

Recipe:

- Create isolated networks
 subnets
- No longer need to know individual Ips – knowing the subnet is enough
 - 223.1.1.0/14 \rightarrow Interface 2

Subnets – Class based

- Originally only rigid boundaries
 - Class A 5.0.0.0/8 0*
 - Class B 149.149.0.0/16 10*
 - Class C 129.82.138.0/14 110*
 - Class D 224.0.0.0 1110*
 - Class E reserved

Subnets – Classless CIDR

- No rigid boundaries
 - 129.82.138.0/25

1000001.01010010.10001010.10000000

Subnets (Prefixes) scales the Internet

- Addresses are allocated in contiguous prefixes (tntech 149.149.0.0/16)
- Routing protocols operate based on prefixes (how do I reach 149.149.0.0/16)?

Not

How do I reach 149.149.5.0/24 How do I reach 149.149.6.0/24

Who gets what prefix?

0. Internet Corporation for
Assigned Names and Numbers
(ICANN) – Decides which RIRs
get what address

 Regional Internet Registries
 (RIRs) – Which orgs get what address

2. ISPs – Which customers get which address

How do you know who has a prefix? "whois"

\$ whois tntech.edu

Domain Name: TNTECH.EDU

Registrant:

Tennessee Technological University Information Technology Service 1010 N. Peachtree Street Cookeville, TN 38505 USA

Domain record activated: 09-Sep-1992 Domain record last updated: 26-Sep-2019 Domain expires: 31-Jul-2020

ARIN Whois/RDAP

140,140,0,0	
149.149.0.0	Sea
» Search www.arin.net instead	Search Filter: Autor
	all requests subject to terms

"149.149.0.0"

Network: NET-149-149-0-0-1		
Source Registry	ARIN	
Net Range	149.149.0.0 - 149.149.255.255	
CIDR	149.149.0.0/16	
Name	TNTECH	
Handle	NET-149-149-0-0-1	
Parent	NET-149-0-0-0	
Net Type	DIRECT ASSIGNMENT	
Origin AS	not provided	
Registration	Thu, 02 May 1991 04:00:00 GMT (Wed May 01 1991 local time)	
Last Changed	Thu, 19 Sep 2019 16:13:53 GMT (Thu Sep 19 2019 local time)	
Self	https://rdap.arin.net/registry/ip/149.149.0.0	
Alternate	https://whois.arin.net/rest/net/NET-149-149-0-0-1	
Port 43 Whois	whois.arin.net	

How many prefixes are there?

11

Bit of history – how the Internet evolved

'88-'94 - 0 → 14000 '94-'00 - 90000 - Linear growth '00-'10 - up to 300,000 '10-'19 - up to 800,000

Internet in the 1990s

Internet now

Hierarchical routing - Policy

scale: with 600 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Autonomous systems (ASes)

- AS
 - A set of routers under a single technical administration
 - Uses IGP within the AS to route packets
 - Uses BGP between Ases to route packets
- What happens inside an AS stays within that AS!
 - That is, AS decides routing metrics internally

Interdomain Routing

A network with four autonomous systems

BGP-4: Border Gateway Protocol

- Assumes the Internet is an arbitrarily interconnected set of AS's.
- Local traffic within the AS
- Transit traffic from AS1 to AS3 via AS2
- Three types of AS's
 - Stub AS
 - Multihomed AS
 - Transit AS

BGP-4: Border Gateway Protocol

BGP: Which routing protocol?

Link state?

- Does not scale
- you can have loops
- exposes routing costs to others

Distance vector?

- Slow to converge, count-to-infinity
- No universal metrics

BGP - goals

- The goal of Inter-domain routing is to find any path to the intended destination that is loop free
 - We are concerned with reachability than optimality
 - Finding path anywhere close to optimal is considered to be a great achievement

• Why?

- Scalability: Forward any packet destined anywhere in the Internet
 - Having a routing table that will provide a match for any valid IP address
- Autonomous nature of the domains
 - impossible to calculate meaningful costs for a path crossing multiple ASs
 - A cost of 1000 is great at provider 1, terrible at provider 2
- Issues of trust
 - Provider A might be unwilling to believe certain advertisements from provider
 B

BGP: Path vector protocol

- Send the whole path with the routing update
- Loops are detected if an AS finds itself in the path
 - Reject if so
 - Accept otherwise
- Add self to the path and advertise to the neighbors
- Advantage: No loops, Local decision before advertizing

BGP: Path vector protocol

- Send the whole path with the routing update
- Loops are detected if an AS finds itself in the path
 - Reject if so
 - Accept otherwise
- Add self to the path and advertise to the neighbors
- Advantage: No loops, Local decision before advertising

BGP: Path vector protocol

BGP: Interconnections

- Uses TCP port 179 to connect to peers
- Arbitrary connections between AS's
- Advantages:
 - Much simpler, no periodic update
 - Valid as long as TCP connection is valid (or withdrawn)
 - Incremental update (only a portion of the routing table)
- Disadvantages:
 - No security
 - Congestion control on routing messages

BGP: Security problems

Anyone can advertise anything!!!

BGP: Hop by Hop model

- You can only tell others what you are using
 - But you control what you say
- BGP advertises only to peers
 - Tell them what you are using
 - Hop-by-hop model

BGP: Allows for policy

- Capable of enforcing various policies
 - AS2 \rightarrow Don't use AS1 to get to AS3
- Not part of BGP configuration information that controls propagation of paths

Reading Assignments

- Scaling to billions:
 - https://book.systemsapproach.org/scaling/problem.html#problem-scaling-to-billions
 - ~2 minutes read
- Global Internet
 - https://book.systemsapproach.org/scaling/global.html#global-internet
 - Skip the routing areas section
 - Read until "Common AS Relationships and Policies"
 - ~40 minutes

