CSC4200/5200 – COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

ARP AND DHCP

sshannigrahi@tntech.edu

So far...

- We now know how to address hosts and networks!
- Subnetting for scale

Internetworking Protocol (IP)

• What is an internetwork?

- An arbitrary collection of networks
- provide some sort of host-host to packet delivery service

Global Address in IP – Each node has an unique address

- A 32 bit number in quad-dot notation
- Identifies an Interface
 - A host might have several interfaces!!!
- **129**.82.138.254

IP addresses are in Network + Host

- 1.1.2.1 →
 - 1.1 \rightarrow Network part
 - 2.1 \rightarrow host part
- Each octet can range from 1-255
- Hierarchical address

129.82.138.254

1000001.01010010.10001010.1111110

Network part (24 bits). Host part(8 bits)

Calculate the first and the last IP address of a subnet

129.82.138.254/27

 $\overline{1000001.01010010.10001010.11100000} \rightarrow 129.82.138.224$

 $1000001.01010010.10001010.1111110 \rightarrow 129.82.138.255$ Perform logical AND to get the network part = 129.82.138.224 Available addresses - 129.82.138.225-129.82.138.254 Broadcast address - 129.82.138.255

IP Fragmentation and Reassembly

IP addresses are in Network + Host

- 1.1.2.1 →
 - 1.1 \rightarrow Network part
 - 2.1 \rightarrow host part
- Each octet can range from 1-255
- Hierarchical address

129.82.138.254

1000001.01010010.10001010.1111110

Network part (24 bits). Host part(8 bits)

Subnetting

Forwarding Table at Router R1

SubnetNumber	SubnetMask	NextHop
128.96.34.0	255.255.255.128	Interface 0
128.96.34.128	255.255.255.128	Interface 1
128.96.33.0	255.255.255.0	R2

Now let's map that to MAC address

- Adaptors only understand MAC addresses
- Source: 129.82.138.254, Destination: 129.82.138.5
- You machine does not know what that means:
 - Routers for getting you to the room
 - In the room, you still need to use the MAC address
- Put IP packet in a frame → **Encapsulation**

IP ↔ MAC mapping: Address Resolution Protocol (ARP)

LAN 2

IP ↔ MAC mapping: Address Resolution Protocol (ARP)

• Important concept → Broadcast

• Shout in the room \rightarrow Who here is Rachel?

ARP table

- Important concept → Broadcast
 - Shout in the room \rightarrow Who here is Rachel?

Ethernet address for 129.82.138.254? Send to : FF-FF-FF-FF-FF Everyone receives it!!

It's me, my MAC is 00:00:22:33:01:21

IP ↔ MAC mapping: Address Resolution Protocol (ARP)

- Every node maintains an ARP table
 - <MAC, IP> mapping
- Consult this table when sending IP packets
- Encapsulate with the MAC address, send it the address
- If address is not known, broadcast!
- Cache the response for some time, and eventually forget
 - Why not broadcast the IP packet?

Subnets Revisited

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a *subnet*

IP addresses are in Network + Host

- 1.1.2.1 →
 - 1.1 \rightarrow Network part
 - 2.1 \rightarrow host part
- Each octet can range from 1-255
- Hierarchical address

129.82.138.254

1000001.01010010.10001010.1111110

Network part (24 bits). Host part(8 bits)

Calculate the first and the last IP address of a subnet

129.82.138.254/27

 $\overline{1000001.01010010.10001010.11100000} \rightarrow 129.82.138.224$

 $1000001.01010010.10001010.1111110 \rightarrow 129.82.138.255$ Perform logical AND to get the network part = 129.82.138.224 Available addresses - 129.82.138.225-129.82.138.254 Broadcast address - 129.82.138.255

Problem

You have an address block: 192.168.123.0/24 CSC needs 50 addresses Library needs 50 Math needs 50 ME needs 50

They can not overlap! Borrow some bits from the host part.

24 bits - 11111111111111111111100000000
2 bits for network 1111111111111111111111111000000
•How many networks?
•How many hosts in each of these networks?

192.168.123.192

subnet mask: /26

DHCP

New laptop joins a network

- Does not have source address
- Does not know who to ask
- Does not know other network parameters like DNS or Gateway router information

DHCP client-server scenario

DHCP Server

- A local central database with a list of IP addresses
 10.0.1/8
- Offers an available IP to a client for a period of time
 - Lease time 24 hours, 1 hour, configurable ← *Soft State*
- Multiple servers might coexist and offer IP to the same request
 - Broadcast medium
 - Client decides which one to accept

DHCP Client – Keep refreshing!

- IP address provided expires after time **t**
- Client can release DHCP lease
 - Shutdown the laptop
- If you walk away from the building Crash
- Performance trade off
 - Short time too many broadcasts, quick recovery of addresses
 - Long time less network traffic, longer recovery of addresses

Reading Assignment

• ARP

- https://book.systemsapproach.org/internetworking/basic-ip.html#address-translation-arp
- About 10 minutes
- DHCP
 - https://book.systemsapproach.org/internetworking/basic-ip.html#host-configuration-dhcp
 - About 10 minutes

Ping and ICMP

- source sends an ICMP echo message
- Destination sends an ICMP echo reply

Tying it all together in the network layer

Internetworking Protocol (IP)

layer

Wait - how are the routing tables populated? Read through chapter 3.2.

Very useful video: https://www.youtube.com/watch?v=rYodcvhh7b8