
Programming Assignment

Due Date - Feb 21, 2021

Objectives

�. Learn to create network packets.

�. Learn how packets can be sent over the network.

�. Familiarize you with the concept of sockets.

�. Learn packing structures, endianness, unpacking, and interpreting network data.

�. Learn how to use actual data from a packet.

�. Use packet capture to visually inspect protocols.

Overview

HINT: Look at python “argparse” module for this portion.

$ lightserver -p <PORT> -l <LOG FILE LOCATION>

1. PORT - The port server listens on. 2. Log file location - Where you will keep a record of actions.

For example:

$ lightserver -p 30000 -l /tmp/logfile

Deliverables (each worth 5 points)

�. Write a server that listens for incoming connections on the specified port.

�. Server must parse two command line arguments, port and log locations.

�. The server must not exit after receiving a single packet.

�. Once a client connects, it logs a message in the following format "Received connection from <CLIENT

IP, PORT> "

�. Once it receives a HELLO message from the client, it logs the connection and sends a HELLO back to the

CSC 4200

Networking and the Internet https://tntech-ngin.github.io/csc4200/programming1/ind...

1 of 4 3/8/22, 14:45

https://tntech-ngin.github.io/csc4200
https://tntech-ngin.github.io/csc4200
https://tntech-ngin.github.io/csc4200

client.
�. You can assume the packet format is the following:

+-----------------+--------------------------+-------------------------+

| | | |

| | | |

|Version(4 bytes) |Message type (4 bytes) |Message Length (4 bytes) |

| | | |

| | | |

+-----------------+--------------------------+-------------------------+

| |

| |

| Message (Max 10 Bytes) |

| |

| |

+--+

�. It receives the packet header first, followed by the message. Hint: You need two RECV calls.

�. Check if Version == 17. If not, log an error message VERSION MISMATCH and continue to listen. Do not

exit.

�. If Version == 17, check the message type. If message Type is 1 - the corresponding command is LIGHTON .

If message type is 2 - the corresponding command is LIGHTOFF . No other command is supported.
��. If the server sees a supported command, log “EXECUTING SUPPORTED COMMAND: COMMANDNAME”,

else log <“IGNORING UNKNOWN COMMAND: COMMANDNAME”.

��. Send back a “SUCCESS” message to the client.
��. Make sure server does not exit on 0 byte messages.

��. On receiving a DISCONNECT message from the client, it closes that particular socket. The whole program

should not exit.
��. Server can handle multiple clients at a given time.

Client Specifications

$ lightclient -s <SERVER-IP> -p <PORT> -l LOGFILE

The client takes three arguments:

1. Server IP - The IP address of the server.

2. PORT - The port the server listens on.

3. Log file location - Where you will keep a record of packets you received.

For example:

$ lightclient -s 192.168.2.1 -p 6543 -l LOGFILE

�. The client must parse three command line arguments, server, port, and logfile.

�. The client should connect to the server on the specified port.

Networking and the Internet https://tntech-ngin.github.io/csc4200/programming1/ind...

2 of 4 3/8/22, 14:45

https://tntech-ngin.github.io/csc4200

�. Constructs and sends a hello packet to the server.

+-----------------+--------------------------+-------------------------+

| | | |

| | | |

|Version(4 bytes) |Message type (4 bytes) |Message Length (4 bytes) |

| | | |

| | | |

+-----------------+--------------------------+-------------------------+

| |

| |

| Message (HELLO) |

| |

| |

+--+

�. Receive reply from Server - if version is 17, log “VERSION ACCEPTED”, else log - “VERSION MISMATCH”

�. If version is accepted, send a command packet.

+-----------------+--------------------------+-------------------------+

| | | |

| | | |

|Version(4 bytes) |Message type (4 bytes) |Message Length (4 bytes) |

| | | |

| | | |

+-----------------+--------------------------+-------------------------+

| |

| |

| COMMAND (LIGHTON/LIGHTOFF) |

| |

| |

+--+

�. Receive the server’s reply, log the reply, send a DISCONNECT message to the server, and shutdown the

socket. You can assume the server always replies with a “SUCCESS” message for this assignment.

��. Use TCPDUMP or Wireshark to capture the interactions, turn the .pcap file in with the assignment.

HINTS:

�. Break the problem down in smaller portions - don’t try to do everything at once.

�. Use ARGPARSE module for parsing the command-line arguments.

�. Code must compile/run on Google Cloud Ubuntu VM (18.04 or later).

�. You must pack the packet in a structure. If you are using python, use the “STRUCT” module. See an

example here: https://pymotw.com/3/struct/

�. Pay extra attention to byte-order encoding before sending the packet. Big-endianness is the dominant

ordering in today’s network protocols.

Networking and the Internet https://tntech-ngin.github.io/csc4200/programming1/ind...

3 of 4 3/8/22, 14:45

https://pymotw.com/3/struct/
https://pymotw.com/3/struct/
https://tntech-ngin.github.io/csc4200

Sample Output (Exact format does not matter)
Server side

Received connection from (IP, PORT): ('127.0.0.1', 53888)

Received Data: version: 17 message_type: 1 length: 1280

VERSION ACCEPTED

EXECUTING SUPPORTED COMMAND: LIGHTON

Returning SUCCESS

Received connection from (IP, PORT): ('127.0.0.1', 53890)

Received Data: version: 17 message_type: 2 length: 1792

VERSION ACCEPTED

EXECUTING SUPPORTED COMMAND: LIGHTOFF

Returning SUCCESS

Client Side

Run 1

Received Data: version: 17 type: 1 length: 1280

VERSION ACCEPTED

Received Message Hello

Sending command

Received Data: version: 17 type: 2 length: 1792

VERSION ACCEPTED

Received Message SUCCESS

Command Successful

Closing socket

Run 2

Sending HELLO Packet

Received Data: version: 17 type: 1 length: 1280

VERSION ACCEPTED

Received Message Hello

Sending command

Received Data: version: 17 type: 2 length: 1792

VERSION ACCEPTED

Received Message SUCCESS

Command Successful

Closing socket

Networking and the Internet https://tntech-ngin.github.io/csc4200/programming1/ind...

4 of 4 3/8/22, 14:45

https://tntech-ngin.github.io/csc4200

