
CSC4200/5200 – COMPUTER NETWORKING

CONNECTING MACHINES TO A NETWORK

Instructor: Susmit Shannigrahi
sshannigrahi@tntech.edu

mailto:sshannigrahi@tntech.edu
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Recap

● What is a network?
● What is the Internet?
● What is a packet?
● What is packet switching?
● How many layers in the current Internet stack?
● Architecture vs Protocol
● Three components of latency?
● Bandwidth-delay product?
● What is jitter?
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Network Adaptors and Mac Addresses

Media access control address (MAC)

A unique identifier assigned to a 
network interface controller (NIC) 

Globally unique
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What does it take to create a link?

● Common abstractions
● Why?

Send a number of bits
from Host A to Router B 
over Interface
XX:YY:ZZ:AA:BB:CC



6

Two Steps to a Link

● Create a physical medium between nodes (wire, fiber, air!)

● Make it carry bits

● Encoding bits so that the other end understands (encoding)
● Create bag of bits to create messages (framing)
● Detect errors in frames (error detection)
● Deal with lost frames (reliable delivery)
● Create shared access to link, e.g, WiFi (media access)
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Step 1  - Create the Physical Link
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Step 2.1 - Encoding

● Bit pattern - 0101001
● Must encode it into electrical signals and then decode it on the 

other end!



9

Step 2.2 – Create Frames – bag of bits 

● Bits - between adaptors 
● Frames – between hosts (two computers want to exchange messages)

● The job of an adaptor is to find frames in a bit sequence

● Frames are link layer protocols
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Step 2.2 - Framing

● Point-to-point 
– Special start of text character denoted as Flag

● 0 1 1 1 1 1 1 0
– Address, control : default numbers
– Protocol for demux : IP / IPX
– Payload : negotiated (1500 bytes)
– Checksum : for error detection 
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Step 2.3 - Error Detection

● Bit errors are introduced into frames
– Because of electrical interference and thermal noises

● Detecting Error
● Correction Error
● Two approaches when the recipient detects an error

– Notify the sender that the message was corrupted, so the sender can send 
again.

● If the error is rare, then the retransmitted message will  be error-free

– Using some error correct detection and correction algorithm, the receiver 
reconstructs the message



12

Error Detection

● Common technique for detecting transmission error
– CRC (Cyclic Redundancy Check)

● Used in HDLC, DDCMP, CSMA/CD, Token Ring

– Other approaches
● Two Dimensional Parity (BISYNC)
● Checksum (IP)
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Error Detection

● Basic Idea of Error Detection
– To add redundant information to a frame that can be used to 

determine if errors have been introduced

0 1 0 1 0 0

0 1 0 1 1 1 Number of 1s
● Odd 1s = Parity bit 1
● Even 1s = Parity bit 0
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Two-dimensional parity

● Two-dimensional parity does a similar calculation 

● Extra parity byte for the entire frame, in addition to a parity 
bit for each byte

● Two-dimensional parity catches all 1-, 2-, and 3-bit errors and 
most 4-bit errors
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Two-dimensional parity

Two Dimensional Parity

Number of 1s
● Odd 1s = Parity bit 1
● Even 1s = Parity bit 0

Do it both horizontally and vertically



19

Others - Cyclic Redundancy Check 
(CRC)

● Reduce the number of extra bits and maximize protection
● N+1 bit message is N degree polynomial

10011010 →
Msg(x)=(1×x7)+(0×x6)+(0×x5)+(1×x4)+(1×x3)+(0×x2)+(1×x1)
+(0×x0)

● Msg(x)=x7+x4+x3+x1
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Others - Cyclic Redundancy Check 
(CRC)
● Msg(x)=x7+x4+x3+x1

● Pick a divisor polynomial (from a table) 
C(x) = x3+x2+1

● Divide M(X) by C(x) → subtract the reminder from M(x)
– Gives you M’(X)
– You can do this by performing a logical XOR

● Send M’(x)and C(x) to the recipient
– If the result is 0, you received a good copy
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Others - Cyclic Redundancy Check 
(CRC)

1. Msg(x)=10011010 = 
x7+x4+x3+x1

2. add k zeros at the end 
of the message, 3 in this 
case.
10011010000 ← T(x)

3. Pick a c(x) → x3+x2+1. 

4. T(x)/c(x) → Reminder 
101.

5. 101 will act as the 
value of  CRC (generally)
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Frames

● We are still sending frames between hosts!

● Shortcomings of error correction/detection?
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Step 2.4 - Reliable Delivery

 Frames might get lost
● Too many bits lost
● Clock did not sync properly
● Error detected but the report got lost

 Can we build links that does not have errors?
● Not possible

 How about all those error correction stuff we learned?
● Can we add them to frames?
● We could, but think of the overhead
● What happens when the entire frame is lost?
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Frames – bag of bits 

● Sending side – encapsulation, add error check bits, flow control
● Receiving side – extract frames, check for error, flow control
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Stop and Wait

 Sender sends a frame, sets a 
timeout (e.g., 1 sec)

 Receiver receives the frame, 
sends an ACK

 Sender 
● sends the next frame on ACK
● retransmits the same frame if timeout happens

 Spot the bugs in the protocol
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Stop and Wait – Bugs (C and D)
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Stop and Wait – How to fix the bug?

Hint: Uniquely identify 
each packet
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Stop and Wait 
v2



30

Stop and Wait  - V2 Problems

 Sender sets a timeout to wait for an ACK 
● Too small – retransmissions
● Too large – long wait if frames are lost

 Solution:
● Keep a running average of Round Trip Times

● EstimatedRTT = (1 – ) • EstimatedRTT +  • SampleRTTα α

● Timeout = 2*EstimatedRTT
● Value of  = 0.125 α

● Where does  come from? RFC 6928 (for now)α

t1

t2
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Stop and Wait – How to fix the bug?

Hint: Uniquely identify 
each packet
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Stop and Wait – How does it perform?

● Bandwidth (R)= 1Gbps

● Packet size (L) = 1000 bytes

● RTT = 30ms

● Ttrans = L/R = 8000bits/109bits/sec = 
8microsecond

● Tprop = 15ms
● Total Delay = 15.008 ms

Kurose/Ross
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Stop and Wait – How does it perform?

● Sender transmits for only 0.008 ms in 
30.008ms

● Utilization = 0.008/30.008 = 0.00027

● One bit at a time

● Worse when loss happens!

ACK

Kurose/Ross

t0 t0+15.008

t0+30.008 t0+15.008
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Reading Assignment

● Chapter 2.4 –Error detection and CRC-  
● https://book.systemsapproach.org/direct/error.html#internet-checksum-algorithm
● https://book.systemsapproach.org/direct/error.html#cyclic-redundancy-check
● About 45 minutes read

● https://book.systemsapproach.org/direct/reliable.html#reliable-transmission
● Until Sliding window
● 10 minutes read

https://book.systemsapproach.org/direct/error.html#cyclic-redundancy-check
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