
CSC4200/5200 – COMPUTER NETWORKING

CONNECTING MACHINES TO A NETWORK

Instructor: Susmit Shannigrahi
sshannigrahi@tntech.edu

mailto:sshannigrahi@tntech.edu

2

Recap

● What is a network?
● What is the Internet?
● What is a packet?
● What is packet switching?
● How many layers in the current Internet stack?
● Architecture vs Protocol
● Three components of latency?
● Bandwidth-delay product?
● What is jitter?

3

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

4

Network Adaptors and Mac Addresses

Media access control address (MAC)

A unique identifier assigned to a
network interface controller (NIC)

Globally unique

5

What does it take to create a link?

● Common abstractions
● Why?

Send a number of bits
from Host A to Router B
over Interface
XX:YY:ZZ:AA:BB:CC

6

Two Steps to a Link

● Create a physical medium between nodes (wire, fiber, air!)

● Make it carry bits

● Encoding bits so that the other end understands (encoding)
● Create bag of bits to create messages (framing)
● Detect errors in frames (error detection)
● Deal with lost frames (reliable delivery)
● Create shared access to link, e.g, WiFi (media access)

7

Step 1 - Create the Physical Link

8

Step 2.1 - Encoding

● Bit pattern - 0101001
● Must encode it into electrical signals and then decode it on the

other end!

9

Step 2.2 – Create Frames – bag of bits

● Bits - between adaptors
● Frames – between hosts (two computers want to exchange messages)

● The job of an adaptor is to find frames in a bit sequence

● Frames are link layer protocols

10

Step 2.2 - Framing

● Point-to-point
– Special start of text character denoted as Flag

● 0 1 1 1 1 1 1 0
– Address, control : default numbers
– Protocol for demux : IP / IPX
– Payload : negotiated (1500 bytes)
– Checksum : for error detection

11

Step 2.3 - Error Detection

● Bit errors are introduced into frames
– Because of electrical interference and thermal noises

● Detecting Error
● Correction Error
● Two approaches when the recipient detects an error

– Notify the sender that the message was corrupted, so the sender can send
again.

● If the error is rare, then the retransmitted message will be error-free

– Using some error correct detection and correction algorithm, the receiver
reconstructs the message

12

Error Detection

● Common technique for detecting transmission error
– CRC (Cyclic Redundancy Check)

● Used in HDLC, DDCMP, CSMA/CD, Token Ring

– Other approaches
● Two Dimensional Parity (BISYNC)
● Checksum (IP)

13

Error Detection

● Basic Idea of Error Detection
– To add redundant information to a frame that can be used to

determine if errors have been introduced

0 1 0 1 0 0

0 1 0 1 1 1 Number of 1s
● Odd 1s = Parity bit 1
● Even 1s = Parity bit 0

14

Two-dimensional parity

● Two-dimensional parity does a similar calculation

● Extra parity byte for the entire frame, in addition to a parity
bit for each byte

● Two-dimensional parity catches all 1-, 2-, and 3-bit errors and
most 4-bit errors

15

Two-dimensional parity

Two Dimensional Parity

Number of 1s
● Odd 1s = Parity bit 1
● Even 1s = Parity bit 0

Do it both horizontally and vertically

19

Others - Cyclic Redundancy Check
(CRC)

● Reduce the number of extra bits and maximize protection
● N+1 bit message is N degree polynomial

10011010 →
Msg(x)=(1×x7)+(0×x6)+(0×x5)+(1×x4)+(1×x3)+(0×x2)+(1×x1)
+(0×x0)

● Msg(x)=x7+x4+x3+x1

20

Others - Cyclic Redundancy Check
(CRC)
● Msg(x)=x7+x4+x3+x1

● Pick a divisor polynomial (from a table)
C(x) = x3+x2+1

● Divide M(X) by C(x) → subtract the reminder from M(x)
– Gives you M’(X)
– You can do this by performing a logical XOR

● Send M’(x)and C(x) to the recipient
– If the result is 0, you received a good copy

21

Others - Cyclic Redundancy Check
(CRC)
● Msg(x)=x7+x4+x3+x1

● Pick a divisor polynomial (from a table)
C(x) = x3+x2+1

● Divide M(X) by C(x) → subtract the reminder from M(x)
– Gives you M’(X)
– You can do this by performing a logical XOR

● Send M’(x)and C(x) to the recipient
– If the result is 0, you received a good copy

22

Others - Cyclic Redundancy Check
(CRC)

1. Msg(x)=10011010 =
x7+x4+x3+x1

2. add k zeros at the end
of the message, 3 in this
case.
10011010000 ← T(x)

3. Pick a c(x) → x3+x2+1.

4. T(x)/c(x) → Reminder
101.

5. 101 will act as the
value of CRC (generally)

23

Frames

● We are still sending frames between hosts!

● Shortcomings of error correction/detection?

24

Step 2.4 - Reliable Delivery

 Frames might get lost
● Too many bits lost
● Clock did not sync properly
● Error detected but the report got lost

 Can we build links that does not have errors?
● Not possible

 How about all those error correction stuff we learned?
● Can we add them to frames?
● We could, but think of the overhead
● What happens when the entire frame is lost?

25

Frames – bag of bits

● Sending side – encapsulation, add error check bits, flow control
● Receiving side – extract frames, check for error, flow control

26

Stop and Wait

 Sender sends a frame, sets a
timeout (e.g., 1 sec)

 Receiver receives the frame,
sends an ACK

 Sender
● sends the next frame on ACK
● retransmits the same frame if timeout happens

 Spot the bugs in the protocol

27

Stop and Wait – Bugs (C and D)

28

Stop and Wait – How to fix the bug?

Hint: Uniquely identify
each packet

29

Stop and Wait
v2

30

Stop and Wait - V2 Problems

 Sender sets a timeout to wait for an ACK
● Too small – retransmissions
● Too large – long wait if frames are lost

 Solution:
● Keep a running average of Round Trip Times

● EstimatedRTT = (1 –) • EstimatedRTT + • SampleRTTα α

● Timeout = 2*EstimatedRTT
● Value of = 0.125 α

● Where does come from? RFC 6928 (for now)α

t1

t2

31

Stop and Wait – How to fix the bug?

Hint: Uniquely identify
each packet

32

Stop and Wait – How does it perform?

● Bandwidth (R)= 1Gbps

● Packet size (L) = 1000 bytes

● RTT = 30ms

● Ttrans = L/R = 8000bits/109bits/sec =
8microsecond

● Tprop = 15ms
● Total Delay = 15.008 ms

Kurose/Ross

33

Stop and Wait – How does it perform?

● Sender transmits for only 0.008 ms in
30.008ms

● Utilization = 0.008/30.008 = 0.00027

● One bit at a time

● Worse when loss happens!

ACK

Kurose/Ross

t0 t0+15.008

t0+30.008 t0+15.008

34

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

35

Reading Assignment

● Chapter 2.4 –Error detection and CRC-
● https://book.systemsapproach.org/direct/error.html#internet-checksum-algorithm
● https://book.systemsapproach.org/direct/error.html#cyclic-redundancy-check
● About 45 minutes read

● https://book.systemsapproach.org/direct/reliable.html#reliable-transmission
● Until Sliding window
● 10 minutes read

https://book.systemsapproach.org/direct/error.html#cyclic-redundancy-check

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Error Detection
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Cyclic Redundancy Check (CRC)
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

