CSC4200/5200 – COMPUTER NETWORKING

NETWORK FUNDAMENTALS

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

Chapter 1: Fundamentals

- Networking is ubiquitous
 - What did you use it for today?
- First things first:
 - Terminology
 - Basic tools
 - What does it take to build an Internet?

Communication

- Transmit meaningful information
- How do you transmit data?

Before that...

Shortcomings

- Slow Can not send too much data
- Translations involved
- Primitive what happens in bad weather?

Telegraph

Sends electrical signals

Shortcomings

- Interference
- Low data volume
- Still need to translate

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Old telephone networks

Internet

Links, Nodes, Network, Internet

- You can view the network as a graph
- Each device (a phone, a computer) is a node
- Each connection is a link
 - Wires = real links
 - Bluetooth, Radio, Infrared = virtual links
- Nodes + links = a network
 - Many connected networks = Internet

A Network and the Internet

Links, Nodes, Routers, Switches

Client and Server

- My laptop with a browser = client
 - It requests a service
 - Email, chat, video, youtube
- A node running a program that serves the requests = server
 - Runs a service
 - Chat, video, messaging
- A node can both be a client and a server

Connectivity

- Point-to-Point
- Multiple access
- Wireless

Circuit Switching

What are the problems?

Frequency Division Multiplexing for Circuit Switching

Time Division Multiplexing for Circuit Switching

Circuit Switching – TDM and FDM

Problems solved? Or do they still exist?

Packet Switching

- Packets are low level components
- Multiple kind of traffic with different requirements
 - Gaming vs Phone
- Dumb network How do you ensure quality of service?
- End points must be smart

Packet Switching

Statistical Multiplexing for Packet Switching

Drop packets, tell the sender to slow down, direct to another routers

How many users can you support?

https://math.stackexchange.com/questions/918861/probability-problem-in-networking

Circuit vs Packet Switching

Circuit Switching

- Dedicated resource divided among participants
- Requires setup, guaranteed performance (unless the link breaks)

Packet Switching

- Shared resource
- Use small chunks of data (packets), send as soon as possible
- Store-and-forward packets

But What is a Packet?

[Image: IP Header]

- Self-contained data unit
- Has two parts (generally)
 - Control information
 - Payload
- How do we transmit "Hello World?"
- How do we transmit a dictionary?

Network Architecture

- What are the requirements from a network?
- Architecture = High-level blueprint
 - Protocols = Building blocks of the architecture
 - Layering = Break down the problem in smaller pieces

Application programs
Process-to-process channels
Host-to-host connectivity
Hardware

Network Layers

- Makes it easier to divide functionality
- Hides implementation details
- Few other reasons?

IP Suite

Network Topology

Data Flow

We reject kings, presidents, and voting. We believe in rough consensus and running code. (David Clark, IETF, July 1992)

wikipedia

Reading Assignment

- Read the overview of Chapter 1 "Problem: Building a Network"
 - https://book.systemsapproach.org/foundation/problem.html#problem-buildi ng-a-network
 - About 5 minutes
- Read Chapter 1.2
 - https://book.systemsapproach.org/foundation/architecture.html#architecture
 - About 45 minutes
- Reach Chapter 1.3
 - https://book.systemsapproach.org/foundation/architecture.html#architecture
 - About 45 minutes

CSC4200/5200 – COMPUTER NETWORKING

LOGISTICS

COVID-19

- Follow the university protocols
 - Masks are not required but highly recommended
 - Lectures will be available on YouTube
 - Will also be live streamed via Zoom

Class website

- Class website: https://tntech-ngin.github.io/S22-CSC4200/
 - Syllabus
 - Grading policies
 - Homework and assignments
 - First assignment already posted Due January 18th
- Instructor: Susmit Shannigrahi
 - Office hours: By appointment. I am (almost) always available on Slack/Email.
 - Email : sshannigrahi@tntech.edu
- GTA: Pallavi Zambare,
 - Email: pzambare42@tntech.edu, Office hours: TBD

Resources

- Class website:
 - https://tntech-ngin.github.io/csc4200/
- Slack: CSC4200-spring2022
 - Will add
- Zoom:
 - See on iLearn, Announcement section

Grading

- Homework 15%
 - Every 2 weeks or so
- Projects + Demo 35%
 - You will set up meetings with the TA to go over your code
- 3 exams 35%
 - approximately once every month (February, March, April) 35%
 - Quarter-term, Midterm, Final
- Class participation 15%
 - Participate in breakout sessions and discussions.
 - Class is not easy you will not do well if you don't participate.

CSC5200

- Extra reading and writing assignments
 - Expect to read one paper each month and present it

Policies

- One late submission allowed (programming assignment), no questions asked. Homeworks are due on time.
 - Use it wisely
 - Max 7 days late
 - Submit to iLearn
- Other late submissions
 - Flat 50% deducted
- No make-up exams.
 - Your responsibility to find conflicts and work with the instructor to resolve them
- No cheating or plagiarism
 - You will fail the class

Exams

- 3 exams.
- Open book
 - Will be challenging
 - Memorizing will not help, you need to understand the topics

Programming Assignments

- Must run on Google Cloud VMs Ubuntu-18.04 or newer
- Individual assignments
- C/C++/Python
 - If you want to use other languages, that's okay
 - Talk to the GTA/Instructor first

Logistics

- Slides and recordings will be posted on the class website in the evening
- Exams and announcements will be on iLearn
- Do not use iLearn email to reach me use sshannigrahi@tntech.edu
- Use slack for instant messaging. I am almost always available on slack.
- Office hours are by appointment email or ping me.

Logistics

- Grading
 - You will get your grades back with feedback in a week
 - If your code doesn't work, the TA will try to reach you, but it is your responsibility to make sure your code works

Expectations from You

- Be communicative if you need help, ask
- Get started on the assignments sooner they will take time
- This class is not easy!
 - Especially you haven't learned the background material so far
- Need to work outside class hours
 - Expect to study and code about 5-10 hours a week
- Each lecture will have reading material