CSC4200/5200 – COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

INTERNET PROTOCOL (IP)

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

CSC4200/5200 – COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

INTERNETWORKING

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

- we saw how to build a local network
- How do we interconnect different types of networks?

Why another layer?

Switches are self learning!

Inspect the source MAC address What is a mac address?

- Associate mac address and incoming interface
- Store this association for later use, (for some time)
 aging-timer

Switching	Table	64	48	48	16		32
Switching	Ιάρις	Preamble	Dest addr	Src addr	Туре	Body	CRC

To decide how to forward a packet, a switch consults a forwarding table
Destination Part

De	estination, Port
А	3
В	0
С	3
D	3
Е	2
F	1
G	0
Н	0
Fo	orwarding Table for Switch 2

Switching Table

Unknown destination → send out on all Interfaces (flooding)

De	estination, Port
А	3
В	
С	3
D	3
Е	2
F	1
G	0
Н	0
Fo	orwarding Table for Switch 2

Switching Table Algorithm

- Create the table first!
 - For each packet
 - If destination address in arriving segment
 - Drop
 - If destination is in another segment
 - Forward
 - If destination unknown
 - Flood!

Switching Table Algorithm

- Send frame from C to F
- Switch $1 \rightarrow$
 - Notes C is on Interface 3
 - Floods
- Switch 2 \rightarrow
 - Notes C is on Interface 3
 - Floods
- Host F replies
 - Switch 2 notes F is on Interface 1
 - Sends back over Interface 3
- Switch 1 notes F is on Interface 1
 - Sends back over Interface 3
 - Host c receives frame

Bridges

- Bridges and LAN Switches
 - Class of switches that is used to forward packets between sharedmedia LANs such as Ethernets
 - Known as LAN switches
 - Referred to as Bridges
- Suppose you have a pair of Ethernets that you want to interconnect
 - One approach is put a repeater in between them, physical limitations
- An alternative would be to put a node between the two Ethernets and have the node forward frames from one Ethernet to the other
 - This node is called a Bridge
 - A collection of LANs connected by one or more bridges is usually said to form an Extended LAN

Flooding over bridges causes forwarding loops

Spot the loop Why?

Loop

Spot the loop Why?

Solution? Spanning Tree

Think of the extended LAN as being represented by a graph that possibly has loops (cycles)

- A spanning tree is a sub-graph of this graph that covers all the vertices but contains no cycles
- Spanning tree keeps all the vertices of the original graph but throws out some of the edges

Example of (a) a cyclic graph; (b) a corresponding spanning tree.

- Properties: No loops
- How?
 - Selectively flood
 - Distributed algorithm, no coordination!
 - Automatic reconciliation when failure occurs

- Properties: No loops
- How?
 - Selectively flood
 - Distributed algorithm, no coordination!
 - Automatic reconciliation when failure occurs
- Switches elect a root
 - The switch with the smallest identifier
 - Each switch identifies if its interface is on the shortest path from the root
 - Exclude if not
- Send message (Y,d,X)
- From x, claims Y is the root, distance is d

- Message (Y, d, X) (to, distance, from)
- 4 thinks it's the root
- Sends (4, 0, 4) to 3 and 5
- Receives (3,0,3) from 3
 - Sets it to as the root since 3 < 4
- Receives (3,1,5) from 5
 - Sees that this is a longer path to 3
 - 2 hops vs direct path (1 hop)
 - Removes 4-5 link from the tree

What does 4 do when it hears from 2?

• Message (Y, d, X) - (to, distance, from)

- 2 hears (1, 0, 1) from 1
- 2 sends (1, 1, 2) to 3
- 3 sends (1, 2, 3) to 5 and 4
- 4 receives (1, 2, 3) from 3
- 4 receives (1, 3, 5) from 5
- Sets 1 as root (id=1 is < id=4)
- Prunes the 4-5 path since it is 4 hops compared to 3 hops via 3

Failure and Downsides

- Even after the system has stabilized, the root continues to send messages periodically
 - Other bridges continue to forward these messages
- When a bridge fails, the downstream bridges will not receive the configuration messages
 - After waiting a specified period of time, they will once again claim to be the root and the algorithm starts again
- No load balancing

Virtual LAN (VLANs)

- LANs are on the same Ethernet segments
- Does not scale very well too many wires
- How can we put multiple people in different locations on the same Ethernet segment (LAN)?
- How do we create multiple LANs over the same wire?

Why separate at all?

- LANs are on the same Ethernet segments! Security.
- Isolation sensitive traffic vs normal traffic
- Containment of traffic your for loop broke the internet
- How do we create multiple LANs over the same wire?

VLANs

- Switches specify which VLAN is accessible over which interface
- Each interface can have a VLAN color
- Each Mac address can have a interface color
- Add VLAN tag to the Ethernet header

So far...

- We are forwarding packets between different LANs
- Spanning tree algorithm for preventing loops

- Message (Y, d, X) (to, distance, from)
- 4 thinks it's the root
- Sends (4, 0, 4) to 3 and 5
- Receives (3,0,3) from 3
 - Sets it to as the root since 3 < 4
- Receives (3,1,5) from 5
 - Sees that this is a longer path to 3
 - 2 hops vs direct path (1 hop)
 - Removes 4-5 link from the tree
- Does not scale!

ATM (Carries Cells, not Money)

- ATM (Asynchronous Transfer Mode)
 - Connection-oriented packet-switched network
- Packets are called cells
- 5 byte header + 48 byte payload
- Fixed length packets are easier to switch in hardware
- Why?

ATM (Carries Cells, not Money)

- ATM (Asynchronous Transfer Mode)
 - Connection-oriented packet-switched netw
 - Packets are called cells
 - 5 byte header + 48 byte payload
- Fixed length packets are easier to switch in hardware
 - Simpler to design
 - Enables parallelism
- Still used in long distance private links

kurose/ross

IP Suite – From the First Lecture

Network Topology

Data Flow

wikipedia

Internet Protocol (IP)

- What is an internetwork?
 - An arbitrary collection of networks interconnected to provide some sort of hosthost to packet delivery service

But that's what switches are for – No?

- Switches create networks, Routers connect different networks.
- Typically switches are at Layer 2, Routers are at Layer 3
- Switches forward FRAMES, Routers forward PACKETS

But that's what switches are for – No?

- This room \rightarrow Point-to-point link
- This room + next room \rightarrow Switch
- This room + next room + foundation hall \rightarrow Switches with VLAN
- This university + Internet \rightarrow Router
- Good for conceptualization not always as simple

Every device has a MAC – Why do we need another address?

- Ethernet (MAC) addresses are flat
- Not the only link layer
- Not related to network topology
 - Remember we are still connecting to hosts!
 - How do we go from: 52:54:00:86:38:14 to thtech?
 - Other reasons?

Apps (HTTP)

Transport (TCP/UDP)

Network (IP Address

Link (MAC Address)

Global Address in IP – Each node has an unique address

- A 32 bit number in quad-dot notation
- Identifies an Interface
 - A host might have several interfaces!!!
- **129**.82.138.254

IP allows the network to scale!

• What if addresses were arbitrary?

Solution - Group hosts

• What if addresses were arbitrary?

IP addresses are in Network + Host

- 1.1.2.1 →
 - 1.1 \rightarrow Network part
 - 2.1 \rightarrow host part
- Each octet can range from 1-255
- Hierarchical address

129.82.138.254

1000001.01010010.10001010.1111110

Network part (24 bits). Host part(8 bits)

How do we know host vs network → Subnetting

129.82.138.254 (Address)

255.255.255.0 (Subnet mask)

Subnetting

Forwarding Table at Router R1

SubnetNumber	SubnetMask	NextHop
128.96.34.0	255.255.255.128	Interface 0
128.96.34.128	255.255.255.128	Interface 1
128.96.33.0	255.255.255.0	R2

Subnetting

Three classes: Class A: 129.0.0.0/8 Class B: 129.82.0.0/16 Class C: 129.82.2.0/14

SubnetNumber	SubnetMask	NextHop
128.96.34.0	255.255.255.128	Interface 0
128.96.34.128	255.255.255.128	Interface 1
128.96.33.0	255.255.255.0	R2

Well, not really!

- CIDR: Classless Interdomain routing
- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address
 - 129.82.13.0/23
 - More flexible

SubnetNumber	SubnetMask	NextHop	
128.96.34.0	255.255.255.128	Interface 0	
128.96.34.128	255.255.255.128	Interface 1	
128.96.33.0	255.255.255.0	R2	

Now routers can operate on Network address!!!!

129.82.138.254 (Address)

255.255.255.0 (Subnet mask)

129.82.138.254 + 255.255.255.0 → 129.82.138.0/24

Address management is localized

Address management can be automated

You have an address – Send data now. IP service model

- Packet Delivery Model
 - Connectionless model for data delivery
- Best-effort delivery (unreliable service)
 - packets are lost
 - packets are delivered out of order
 - duplicate copies of a packet are delivered
 - packets can be delayed for a long time
- Global Addressing Scheme
 - Provides a way to identify all hosts in the network

IP Packet

C) 4	4 4	3 1	6 1	9	31	
	Version	HLen	TOS	Length		gth	
Ident		Flags Offset		Offset			
	ТТ	Ľ	Protocol	Checksum		Check	
	SourceAddr						
DestinationAddr							
(Intione (Variable)				Pad (variable)			
Data							

Version (4): 4

Hlen (4): number of 32-bit words in header

TOS (8): type of service (not widely used)

Length (16): number of bytes in this datagram

Ident (16): used by fragmentation

Flags/Offset (16): used by fragmentation

TTL (8): number of hops this datagram has traveled

Protocol (8): demux key (TCP=6, UDP=17)

Checksum (16): of the header only

DestAddr & SrcAddr (32)

Underlying Layer 2 limitations

- Ethernet 1500
- PPP 512
- Break packets into smaller chunk and reassemble later

Underlying Layer 2 limitations

- Ethernet 1500
- PPP 512
- Break packets into smaller chunk and reassemble later

Reading Assignments

Internetworking:

https://book.systemsapproach.org/internetworking/basic-ip.html#what-is-an-internetwork

Upto Global Addresses:

https://book.systemsapproach.org/internetworking/basic-ip.html#global-addresses

Reading Assignment

Switching Basics – Chapter 3.1

- https://book.systemsapproach.org/internetworking/switching.html#switching-basics
- Up to (but not including) Virtual Circuit Switching
- 20 minutes read
- Switched Ethernet, learning bridges, spanning tree algorithm, VLANs Chapter 3.2
- https://book.systemsapproach.org/internetworking/ethernet.html#switched-ethernet
 - 30-40 minutes read