
CSC2710 – INTRO TO NETWORKS AND SYSTEMS

TRANSPORT LAYER PROTOCOLS

Instructor: Susmit Shannigrahi

sshannigrahi@tntech.edu

mailto:sshannigrahi@tntech.edu

2

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

3

What is transport layer?

● Problem: How to turn this host-to-host packet delivery service into
a process-to-process communication channel?

4

Transport services and protocols
● provide logical communication

between app processes running on
different hosts

● transport protocols run in end
systems
– send side: breaks app messages

into segments, passes to network
layer

– rcv side: reassembles segments
into messages, passes to app
layer

● more than one transport protocol
available to apps
– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

5

Principles of reliable data transfer

● important in application, transport, link layers
– top-10 list of important networking topics!

6

TCP – Transmission Control Protocol
● full duplex data:

– bi-directional data flow in same
connection

– MSS: maximum segment size
● connection-oriented:

– handshaking (exchange of
control msgs) inits sender,
receiver state before data
exchange

● flow controlled:
– sender will not overwhelm

receiver

● point-to-point:
– one sender, one receiver

● reliable, in-order byte steam:
– no “message boundaries”

● pipelined:
– TCP congestion and flow

control set window size

7

TCP – Transmission Control Protocol

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Host 1

Host 2

segment

8

TCP Segment

Why?

IP
header

TCP segmentTCP header

IP Data

IP → No more than MTU (1500 Bytes)

TCP header → 20 bytes

TCP segment → 1460 bytes

9

TCP Header

TCP Header Format

SYN

FIN

RST

PSH

URG

ACK

10

TCP – Transmission Control Protocol
● full duplex data:

– bi-directional data flow in same
connection

– MSS: maximum segment size
● connection-oriented:

– handshaking (exchange of
control msgs) inits sender,
receiver state before data
exchange

● flow controlled:
– sender will not overwhelm

receiver

● point-to-point:
– one sender, one receiver

● reliable, in-order byte steam:
– no “message boundaries”

● pipelined:
– TCP congestion and flow

control set window size

11

TCP seq. numbers, ISNs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’ , echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Sequence number for the first byte

Why not use 0 all the time?
● Security
● Port are reused, you might end up

using someone else’s previous
connection

● Phone number analogy

● TCP ISNs are clock based
● 32 bits, increments in 4 microseconds
● 4.55 hours wrap around time

12Transport Layer3-12

TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’ , echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

13

TCP Three-way Handshake

Timeline for three-way handshake algorithm

The idea is to tell each other
The ISNs

SYN → Client tells server that
it wants to open a connection,
Client’s ISN = x

SYN+ ACK → Server tells
Client → Okay → Server’s ISN
= y, ACK = CLSeq + 1

Why increment by 1?

14

What if the SYN is lost?

Timeline for three-way handshake algorithm

Start Timer and resend

15

TCP Retransmission - ARQ

Each packet is “ACK”ed by
the receiver

If ACK isn’t received by
timeout, resend

Example, Stop-n-wait

Sender
Receiver

Packet

ACK

Retransmit

Timeout

16

How long should the sender wait?

For TCP, timeout is a function
of RTT

Keep a running estimate of RTTs
by watching the ACKs

EstimatedRTT = (1 – α) • EstimatedRTT
+ α • SampleRTT

Alpha is generally 0.125

Timeout = 2* EstimatedRTT

Sender
Receiver

Packet

ACK

Retransmit

Timeout

17

But stop and wait is inefficient

Only one segment in-flight

Especially bad if delay is high!

Solution – sliding window

Sender
Receiver

Packet

ACK

Retransmit

Timeout

18

Sliding Window Revisited

Relationship between TCP send buffer (a) and receive buffer (b).

Sending Side
LastByteAcked ≤ LastByteSent
LastByteSent ≤ LastByteWritten

Receiving Side
LastByteRead < NextByteExpected
NextByteExpected ≤ LastByteRcvd + 1

19

Used for TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so sender
won’t overflow receiver’s buffer by
transmitting too much, too fast

flow control

20Transport Layer3-20

TCP flow control
● receiver “advertises” free buffer

space in the header

● sender limits amount of unacked
(“ in-flight”) data to receiver’s
rwnd value

● guarantees receive buffer will
not overflow

21

TCP Fast Retransmission

Timeouts are wasteful

Triple duplicate ACKs

Retransmits before timeout

22

TCP Fast Retransmission - SACK
What if multiple segments are lost?

Very good explanation:
https://packetlife.net/blog/2010/jun/17/tcp-selective-acknowledgments-sack/

23Transport Layer3-23

TCP: closing a connection

● client, server each close their side of connection
– send TCP segment with FIN bit = 1

● respond to received FIN with ACK
– on receiving FIN, ACK can be combined with own FIN

● simultaneous FIN exchanges can be handled

24Transport Layer3-24

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state
ESTABESTAB

25Transport Layer3-25

Congestion Control

26Transport Layer3-26

congestion:
● informally: “ too many sources sending too much data too

fast for network to handle”
● different from flow control!
● manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

● a top-10 problem!

Principles of congestion control

27

Congestion: scenario 1
● three senders, two receivers
● one router, infinite buffers
● output link capacity: R
● The router can only transmit

one –... and either buffer or
drop the other

● If many packets arrive,
● Buffer overflow

unlimited shared output
link buffers

Host A

original data: in

Host B

throughput:out

28Transport Layer3-28

● one router, finite buffers
● sender retransmission of timed-out packet

– application-layer input = application-layer output:in = out

– transport-layer input includes retransmissions :in in

finite shared output link
buffers

Host A

in : original data

Host B

out'in: original data, plus

retransmitted data

‘

Causes/costs of congestion: scenario 2

29Transport Layer3-29

High throughput –
● Throughput: measured performance of a system –E.g., number of

bits/second of data that get through
● Low delay –
● Delay: time required to deliver a packet or message –E.g., number of

ms to deliver a packet •
● These two metrics are sometimes at odds –

● More packets = more queuing

Metrics: Throughput vs Delay

30

Issues in Resource Allocation

● Evaluation Criteria
– Effective Resource Allocation

Ratio of throughput to delay as a function of load

power of the network.
Power = Throughput/Delay

31

Issues in Resource Allocation

● Evaluation Criteria
– Fair Resource Allocation

● The effective utilization of network resources is not the only criterion for
judging a resource allocation scheme.

● We want to be “fair”
● Equal share of bandwidth

But, what if the flows traverse different paths?

Open problem, often determined by economics

32

Queuing Disciplines

(a) FIFO queuing; (b) tail drop at a FIFO queue.

Simplest – FIFO
and drop tail

What are the problems?

Router

33

Defining Fairness: Flows

“fair” to whom? – Should be Fair to a Flow

What is a flow?
Combination of <Src IP, Src Port, Dst IP, Dst Port>

34

Fair Queuing

● Fair Queuing
– FIFO does not discriminate between different traffic sources, or

– it does not separate packets according to the flow to which they
belong.

– Fair queuing (FQ) maintains a separate queue for each flow

35

Queuing Disciplines
● Fair Queuing

Round-robin service of four flows at a router

36Transport Layer3-36

Congestion Control

37Transport Layer3-37

congestion:
● informally: “ too many sources sending too much data too

fast for network to handle”
● different from flow control!
● manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

● a top-10 problem!

Principles of congestion control

38

Congestion: scenario 1
● three senders, two receivers
● one router, infinite buffers
● output link capacity: R
● The router can only transmit

one –... and either buffer or
drop the other

● If many packets arrive,
● Buffer overflow

unlimited shared output
link buffers

Host A

original data: in

Host B

throughput:out

39Transport Layer3-39

● one router, finite buffers
● sender retransmission of timed-out packet

– application-layer input = application-layer output:in = out

– transport-layer input includes retransmissions :in in

finite shared output link
buffers

Host A

in : original data

Host B

out'in: original data, plus

retransmitted data

‘

Causes/costs of congestion: scenario 2

40Transport Layer3-40

High throughput –
● Throughput: measured performance of a system –E.g., number of

bits/second of data that get through
● Low delay –
● Delay: time required to deliver a packet or message –E.g., number of

ms to deliver a packet •
● These two metrics are sometimes at odds –

● More packets = more queuing

Metrics: Throughput vs Delay

41

Issues in Resource Allocation

● Evaluation Criteria
– Effective Resource Allocation

Ratio of throughput to delay as a function of load

power of the network.
Power = Throughput/Delay

42

Issues in Resource Allocation

● Evaluation Criteria
– Fair Resource Allocation

● The effective utilization of network resources is not the only criterion for
judging a resource allocation scheme.

● We want to be “fair”
● Equal share of bandwidth

But, what if the flows traverse different paths?

Open problem, often determined by economics

43

Queuing Disciplines

(a) FIFO queuing; (b) tail drop at a FIFO queue.

Simplest – FIFO
and drop tail

What are the problems?

Router

44

TCP Congestion Control

What is the basic idea?

c
w
n
d
:

 T
C

P
 s

en
de

r
co

ng
es

tio
n

w
in

d
ow

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

45

TCP Congestion Control

● Each source determines available capacity
● Max many packets is allowed to have in transit - window
● Congestion window = # of unacked bytes
● MaxSendWindow = min(congestion window, receiver

window)

● How do you change congestion window?
– Decrease on losing a packet (back off)
– Increase on successful send

46

How much to increase and decrease?

● Additive Increase, Multiplicative Decrease (AIMD)

47

 approach: sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs
 additive increase: increase cwnd by 1 MSS every RTT until loss

detected
 multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

 T
C

P
 s

en
de

r
co

ng
es

tio
n

w
in

d
ow

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

How much to increase and decrease?

48

TCP Slow Start

● when connection begins, increase
rate exponentially until first loss
event:
– initially cwnd = 1 MSS
– double cwnd every RTT
– done by incrementing cwnd for

every ACK received

● summary: initial rate is slow but
ramps up exponentially fast

Host A

R
T

T

Host B

time

49

TCP Slow Start

Why not start with a
large window?

Why not increase one by one?

Host A

R
T

T

Host B

time

50

TCP: detecting, reacting to loss

● loss indicated by timeout:
– cwnd set to 1 MSS;
– window then grows exponentially (as in slow start) to threshold, then grows

linearly

● loss indicated by 3 duplicate ACKs: TCP RENO
– dup ACKs indicate network capable of delivering some segments
– cwnd is cut in half window then grows linearly

● TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

51

TCP:Two types of loss

● Triple duplicate ack
– Do a multiplicative decrease, keep going

● Timeout
– Reset CWND to 1
– Take advantage of

52

TCP Slow Start and congestion
avoidance

https://www.researchgate.net/figure/3-TCP-slow-start-phase-and-congestion-avoidance-phase_fig3_225731524

How to set
ssthresh?

Initially – Randomly
high

Later – adjusted as
congestion happens

53

TCP Congestion Summary

CWND < Threshold Slow Start, Exponential increase→
CWND > Threshold Congestion Avoidance, Linear increase→
Triple Duplicate ACK Threshold = CWND/2, CWND = CWND/2→
Timeout Threshold→ = CWND/2, CWDN = 1 (or 3)

54

TCP Throughput

 TCP average throughput as a function of window size and RTT?
Ignore slow start, assume long TCP flow

Let W be the window size

Throughput = W/RTT
After loss, throughput = W/2*RTT
Average throughput = 0.75W/RTT

55

TCP Throughput

 TCP average throughput as a function of window size and RTT?
Ignore slow start, assume long TCP flow

Let W be the window size

Throughput = W/RTT
After loss, throughput = W/2*RTT
Average throughput = 0.75W/RTT

Throughput = (1.22*MSS)*(RTT/sqrt(Loss)) Magic formula←

What is the loss rate to maximize 100Gbps pipe with
9000 bytes segments and 100ms RTT? Hint – must be very very low

56

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

	Slide 1
	Slide 2
	Slide 3
	Transport services and protocols
	Principles of reliable data transfer
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	Slide 7
	Slide 8
	TCP Header
	Slide 10
	Slide 11
	Slide 12
	Connection Establishment/Termination in TCP
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	TCP flow control
	Slide 20
	Slide 21
	Slide 22
	TCP: closing a connection
	Slide 24
	Slide 25
	Principles of congestion control
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	TCP congestion control: additive increase multiplicative decrease
	TCP Slow Start
	Slide 49
	TCP: detecting, reacting to loss
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

