
CSC2710 – INTRO TO NETWORKS AND SYSTEMS

TRANSPORT LAYER PROTOCOLS

Instructor: Susmit Shannigrahi

sshannigrahi@tntech.edu

mailto:sshannigrahi@tntech.edu


2

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)



3

What is transport layer?

● Problem:  How to turn this host-to-host packet delivery service into 
a process-to-process communication channel?
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Transport services and protocols
● provide logical communication 

between app processes running on 
different hosts

● transport protocols run in end 
systems 
– send side: breaks app messages 

into segments, passes to  network 
layer

– rcv side: reassembles segments 
into messages, passes to app 
layer

● more than one transport protocol 
available to apps
– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical
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Principles of reliable data transfer

● important in application, transport, link layers
– top-10 list of important networking topics!
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TCP – Transmission Control Protocol
● full duplex data:

– bi-directional data flow in same 
connection

– MSS: maximum segment size
● connection-oriented: 

– handshaking (exchange of 
control msgs) inits sender, 
receiver state before data 
exchange

● flow controlled:
– sender will not overwhelm 

receiver

● point-to-point:
– one sender, one receiver 

● reliable, in-order byte steam:
– no “message boundaries”

● pipelined:
– TCP congestion and flow 

control set window size
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TCP – Transmission Control Protocol

1        2        3        4         5        6       7         8

1        2        3        4         5        6       7         8

Host 1

Host 2

segment
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TCP Segment

Why?

IP
header

TCP segmentTCP header

IP Data

IP → No more than MTU (1500 Bytes)

TCP header → 20 bytes

TCP segment → 1460 bytes
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TCP Header

TCP Header Format

SYN

FIN

RST 

PSH 

URG 

ACK
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TCP – Transmission Control Protocol
● full duplex data:

– bi-directional data flow in same 
connection

– MSS: maximum segment size
● connection-oriented: 

– handshaking (exchange of 
control msgs) inits sender, 
receiver state before data 
exchange

● flow controlled:
– sender will not overwhelm 

receiver

● point-to-point:
– one sender, one receiver 

● reliable, in-order byte steam:
– no “message boundaries”

● pipelined:
– TCP congestion and flow 

control set window size
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TCP seq. numbers, ISNs

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’ , echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Sequence number for the first byte

Why not use 0 all the time?
● Security
● Port are reused, you might end up

using someone else’s previous 
connection

● Phone number analogy

● TCP ISNs are clock based
● 32 bits, increments in 4 microseconds
● 4.55 hours wrap around time
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TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’ , echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
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TCP Three-way Handshake

Timeline for three-way handshake algorithm

The idea is to tell each other 
The ISNs

SYN → Client tells server that
it wants to open a connection,
Client’s ISN = x

SYN+ ACK → Server tells 
Client → Okay → Server’s ISN 
= y, ACK = CLSeq + 1

Why increment by 1?
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What if the SYN is lost?

Timeline for three-way handshake algorithm

Start Timer and resend
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TCP Retransmission - ARQ

Each packet is “ACK”ed by
the receiver

If ACK isn’t received by 
timeout, resend

Example, Stop-n-wait

Sender
Receiver

Packet

ACK

Retransmit

Timeout
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How long should the sender wait?

For TCP, timeout is a function
of RTT

Keep a running estimate of RTTs
by watching the ACKs

EstimatedRTT = (1 – α) • EstimatedRTT 
+ α • SampleRTT

Alpha is generally 0.125

Timeout = 2* EstimatedRTT

Sender
Receiver

Packet

ACK

Retransmit

Timeout
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But stop and wait is inefficient

Only one segment in-flight

Especially bad if delay is high!

Solution – sliding window

Sender
Receiver

Packet

ACK

Retransmit

Timeout
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Sliding Window Revisited

Relationship between TCP send buffer (a) and receive buffer (b).

Sending Side
LastByteAcked ≤ LastByteSent
LastByteSent ≤ LastByteWritten

Receiving Side
LastByteRead < NextByteExpected
NextByteExpected ≤ LastByteRcvd + 1
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Used for TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than TCP 
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so sender 
won’t overflow receiver’s buffer by 
transmitting too much, too fast

flow control
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TCP flow control
● receiver “advertises”  free buffer 

space in the header

● sender limits amount of unacked 
(“ in-flight” ) data to receiver’s 
rwnd value 

● guarantees receive buffer will 
not overflow
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TCP Fast Retransmission

Timeouts are wasteful

Triple duplicate ACKs

Retransmits before timeout
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TCP Fast Retransmission - SACK
What if multiple segments are lost?

Very good explanation:
https://packetlife.net/blog/2010/jun/17/tcp-selective-acknowledgments-sack/
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TCP: closing a connection

● client, server each close their side of connection
– send TCP segment with FIN bit = 1

● respond to received FIN with ACK
– on receiving FIN, ACK can be combined with own FIN

● simultaneous FIN exchanges can be handled



24Transport Layer3-24

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait 
for 2*max 

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state
ESTABESTAB
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Congestion Control
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congestion:
● informally: “ too many sources sending too much data too 

fast for network to handle”
● different from flow control!
● manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

● a top-10 problem!

Principles of congestion control
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Congestion: scenario 1 
● three senders, two receivers
● one router, infinite buffers 
● output link capacity: R
● The router can only transmit 

one –... and either buffer or 
drop the other

● If many packets arrive, 
● Buffer overflow

unlimited shared output 
link buffers

Host A

original data: in 

Host B

throughput:out
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● one router, finite buffers 
● sender retransmission of timed-out packet

– application-layer input = application-layer output:in = out

– transport-layer input includes retransmissions :in    in

finite shared output link 
buffers

Host A

in : original data

Host B

out'in: original data, plus 

retransmitted data

‘

Causes/costs of congestion: scenario 2 
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High throughput –
● Throughput: measured performance of a system –E.g., number of 

bits/second of data that get through 
● Low delay –
● Delay: time required to deliver a packet or message –E.g., number of 

ms to deliver a packet •
● These two metrics are sometimes at odds –

● More packets = more queuing

Metrics: Throughput vs Delay
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Issues in Resource Allocation

● Evaluation Criteria
– Effective Resource Allocation

Ratio of throughput to delay as a function of load

power of the network.
Power = Throughput/Delay
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Issues in Resource Allocation

● Evaluation Criteria
– Fair Resource Allocation

● The effective utilization of network resources is not the only criterion for 
judging a resource allocation scheme. 

● We want to be “fair”
● Equal share of bandwidth 

But, what if the flows traverse different paths? 

Open problem, often determined by economics
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Queuing Disciplines

(a) FIFO queuing; (b) tail drop at a FIFO queue.

Simplest – FIFO
and drop tail

What are the problems?

Router
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Defining Fairness: Flows 

“fair” to whom?   – Should be Fair to a Flow 

What is a flow? 
Combination of <Src IP, Src Port, Dst IP,  Dst Port> 
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Fair Queuing

● Fair Queuing
–  FIFO does not discriminate between different traffic sources, or

– it does not separate packets according to the flow to which they 
belong.

– Fair queuing (FQ) maintains a separate queue for each flow
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Queuing Disciplines
● Fair Queuing

Round-robin service of four flows at a router
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Congestion Control
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congestion:
● informally: “ too many sources sending too much data too 

fast for network to handle”
● different from flow control!
● manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

● a top-10 problem!

Principles of congestion control
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Congestion: scenario 1 
● three senders, two receivers
● one router, infinite buffers 
● output link capacity: R
● The router can only transmit 

one –... and either buffer or 
drop the other

● If many packets arrive, 
● Buffer overflow

unlimited shared output 
link buffers

Host A

original data: in 

Host B

throughput:out
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● one router, finite buffers 
● sender retransmission of timed-out packet

– application-layer input = application-layer output:in = out

– transport-layer input includes retransmissions :in    in

finite shared output link 
buffers

Host A

in : original data

Host B

out'in: original data, plus 

retransmitted data

‘

Causes/costs of congestion: scenario 2 
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High throughput –
● Throughput: measured performance of a system –E.g., number of 

bits/second of data that get through 
● Low delay –
● Delay: time required to deliver a packet or message –E.g., number of 

ms to deliver a packet •
● These two metrics are sometimes at odds –

● More packets = more queuing

Metrics: Throughput vs Delay
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Issues in Resource Allocation

● Evaluation Criteria
– Effective Resource Allocation

Ratio of throughput to delay as a function of load

power of the network.
Power = Throughput/Delay
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Issues in Resource Allocation

● Evaluation Criteria
– Fair Resource Allocation

● The effective utilization of network resources is not the only criterion for 
judging a resource allocation scheme. 

● We want to be “fair”
● Equal share of bandwidth 

But, what if the flows traverse different paths? 

Open problem, often determined by economics
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Queuing Disciplines

(a) FIFO queuing; (b) tail drop at a FIFO queue.

Simplest – FIFO
and drop tail

What are the problems?

Router
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TCP Congestion Control

What is the basic idea?
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behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time
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TCP Congestion Control 

● Each source determines available capacity
● Max many packets is allowed to have in transit - window
● Congestion window = # of unacked bytes 
● MaxSendWindow = min(congestion window, receiver 

window)

● How do you change congestion window?
– Decrease on losing a packet (back off)
– Increase on successful send
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How much to increase and decrease?

● Additive Increase, Multiplicative Decrease (AIMD)
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 approach: sender increases transmission rate (window size), 
probing for usable bandwidth, until loss occurs
 additive increase: increase  cwnd by 1 MSS every RTT until loss 

detected
 multiplicative decrease: cut cwnd in half after loss 
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…. until loss occurs (then cut window in half)

time

How much to increase and decrease?
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TCP Slow Start 

● when connection begins, increase 
rate exponentially until first loss 
event:
– initially cwnd = 1 MSS
– double cwnd every RTT
– done by incrementing cwnd for 

every ACK received

● summary: initial rate is slow but 
ramps up exponentially fast

Host A

R
T

T

Host B

time
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TCP Slow Start 

Why not start with a 
large window?

Why not increase one by one?

Host A

R
T

T

Host B

time
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TCP: detecting, reacting to loss

● loss indicated by timeout:
– cwnd set to 1 MSS; 
– window then grows exponentially (as in slow start) to threshold, then grows 

linearly

● loss indicated by 3 duplicate ACKs: TCP RENO
– dup ACKs indicate network capable of  delivering some segments 
– cwnd is cut in half window then grows linearly

● TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)
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TCP:Two types of loss

● Triple duplicate ack
– Do a multiplicative decrease, keep going

● Timeout
– Reset CWND to 1
– Take advantage of  
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TCP Slow Start and congestion 
avoidance

https://www.researchgate.net/figure/3-TCP-slow-start-phase-and-congestion-avoidance-phase_fig3_225731524

How to set 
ssthresh?

Initially – Randomly
high

Later – adjusted as 
congestion happens
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TCP Congestion Summary

CWND < Threshold  Slow Start, Exponential increase→
CWND > Threshold  Congestion Avoidance, Linear increase→
Triple Duplicate ACK  Threshold = CWND/2, CWND = CWND/2→
Timeout  Threshold→  = CWND/2, CWDN = 1 (or 3)
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TCP Throughput 

 TCP average throughput as a function of window size and RTT?
Ignore slow start, assume long TCP flow

Let W be the window size 

Throughput = W/RTT
After loss, throughput = W/2*RTT
Average throughput  = 0.75W/RTT 
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TCP Throughput 

 TCP average throughput as a function of window size and RTT?
Ignore slow start, assume long TCP flow

Let W be the window size 

Throughput = W/RTT
After loss, throughput = W/2*RTT
Average throughput  = 0.75W/RTT 

Throughput = (1.22*MSS)*(RTT/sqrt(Loss))  Magic formula←

What is the loss rate to maximize 100Gbps pipe with 
9000 bytes segments and 100ms RTT? Hint – must be very very low
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