
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming

Instructors:
Susmit Shannigrahi

Carnegie Mellon

2

A Client-Server Transaction
 Most network applications are based on the client-

server model:
 A server process and one or more client processes
 Server manages some resource
 Server provides service by manipulating resource for clients
 Server activated by request from client (vending machine

analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response4. Client
handles
response

2. Server
handles
request

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Carnegie Mellon

3

Hardware Organization of a Network
Host

main
memory

I/O
bridgeMI

ALU

register file
CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

Expansion slots

network
adapter

network

Carnegie Mellon

4

Computer Networks
 A network is a hierarchical system of boxes and

wires organized by geographical proximity
 SAN (System Area Network) spans cluster or machine

room
 Switched Ethernet, Quadrics QSW, …

 LAN (Local Area Network) spans a building or campus
 Ethernet is most prominent example

 WAN (Wide Area Network) spans country or world
 Typically high-speed point-to-point phone lines

 An internetwork (internet) is an interconnected
set of networks
 The Global IP Internet (uppercase “I”) is the most famous

example of an internet (lowercase “i”)

 Let’s see how an internet is built from the
ground up

Carnegie Mellon

5

Lowest Level: Ethernet Segment

 Ethernet segment consists of a collection of hosts
connected by wires (twisted pairs) to a hub

 Spans room or floor in a building
 Operation

 Each Ethernet adapter has a unique 48-bit address (MAC address)
 E.g., 00:16:ea:e3:54:e6

 Hosts send bits to any other host in chunks called frames
 Hub slavishly copies each bit from each port to every other port

 Every host sees every bit
 Note: Hubs are on their way out. Bridges (switches, routers) became

cheap enough to replace them

host host host

hub
100 Mb/s100 Mb/s

port

Carnegie Mellon

6

Next Level: Bridged Ethernet
Segment

 Spans building or campus
 Bridges cleverly learn which hosts are reachable

from which ports and then selectively copy frames
from port to port

host host host host host

hu
b

hu
b

bridg
e

100 Mb/s 100 Mb/s

host host

hu
b

100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridg
e

hosthost

hu
b

A B

C

X

Y

Carnegie Mellon

7

Conceptual View of LANs
 For simplicity, hubs, bridges, and wires are often

shown as a collection of hosts attached to a single
wire:

host host host...

Carnegie Mellon

8

Next Level: internets
 Multiple incompatible LANs can be physically

connected by specialized computers called routers
 The connected networks are called an internet

(lower case)

host host host... host host host...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally
incompatible
(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router
LAN 1 LAN 2

Carnegie Mellon

9

Logical Structure of an internet

 Ad hoc interconnection of networks
 No particular topology
 Vastly different router & link capacities

 Send packets from source to destination by
hopping through networks
 Router forms bridge from one network to another
 Different packets may take different routes

router

router

router
router

router

router

host
host

Carnegie Mellon

10

The Notion of an internet
Protocol

 How is it possible to send bits across
incompatible LANs and WANs?

 Solution: protocol software running on each
host and router
 Protocol is a set of rules that governs how hosts and

routers should cooperate when they transfer data from
network to network.

 Smooths out the differences between the different
networks

Carnegie Mellon

11

What Does an internet Protocol Do?
 Provides a naming scheme

 An internet protocol defines a uniform format for host
addresses

 Each host (and router) is assigned at least one of these
internet addresses that uniquely identifies it

 Provides a delivery mechanism
 An internet protocol defines a standard transfer unit (packet)
 Packet consists of header and payload

 Header: contains info such as packet size, source and
destination addresses

 Payload: contains data bits sent from source host

Carnegie Mellon

12

LAN2

Transferring internet Data Via
Encapsulation

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame
(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: Internet packet header
FH: LAN frame header

Carnegie Mellon

13

Other Issues
 We are glossing over a number of important

questions:
 What if different networks have different maximum frame

sizes? (segmentation)
 How do routers know where to forward frames?
 How are routers informed when the network topology

changes?
 What if packets get lost?

 These (and other) questions are addressed by
the area of systems known as computer
networking

Carnegie Mellon

14

Global IP Internet (upper case)
 Most famous example of an internet

 Based on the TCP/IP protocol family
 IP (Internet Protocol) :

 Provides basic naming scheme and unreliable delivery
capability
of packets (datagrams) from host-to-host

 UDP (Unreliable Datagram Protocol)
 Uses IP to provide unreliable datagram delivery from

process-to-process
 TCP (Transmission Control Protocol)

 Uses IP to provide reliable byte streams from process-to-
process over connections

 Accessed via a mix of Unix file I/O and functions
from the sockets interface

Carnegie Mellon

15

Hardware and Software
Organization
of an Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

Carnegie Mellon

16

A Programmer’s View of the
Internet

1. Hosts are mapped to a set of 32-bit IP addresses
 128.2.203.179

2. The set of IP addresses is mapped to a set of
identifiers called Internet domain names

 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can
communicate with a process on another Internet
host over a connection

Carnegie Mellon

17

Aside: IPv4 and IPv6
 The original Internet Protocol, with its 32-bit

addresses, is known as Internet Protocol Version
4 (IPv4)

 1996: Internet Engineering Task Force (IETF)
introduced Internet Protocol Version 6 (IPv6) with
128-bit addresses
 Intended as the successor to IPv4

 As of 2015, vast majority of Internet traffic still
carried by IPv4
 Only 4% of users access Google services using IPv6.

 We will focus on IPv4, but will show you how to
write networking code that is protocol-
independent.

Carnegie Mellon

18

(1) IP Addresses
 32-bit IP addresses are stored in an IP address

struct
 IP addresses are always stored in memory in network byte

order
(big-endian byte order)

 True in general for any integer transferred in a packet header
from one machine to another.

 E.g., the port number used to identify an Internet
connection.

/* Internet address structure */
struct in_addr {
 uint32_t s_addr; /* network byte order (big-endian) */
};

Carnegie Mellon

19

Dotted Decimal Notation
 By convention, each byte in a 32-bit IP address is

represented by its decimal value and separated by a
period

 IP address: 0x8002C2F2 = 128.2.194.242

 Use getaddrinfo and getnameinfo functions
(described later) to convert between IP addresses
and dotted decimal format.

Carnegie Mellon

20

(2) Internet Domain Names

.net .edu .gov .com

cmu berkeleymit

cs ece

whaleshark
128.2.210.175

ics

unnamed root

pdl

www
128.2.131.66

amazon

www
176.32.98.166

First-level domain names

Second-level domain names

Third-level domain names

Carnegie Mellon

21

Domain Naming System (DNS)
 The Internet maintains a mapping between IP

addresses and domain names in a huge worldwide
distributed database called DNS

Conceptually, programmers can view the DNS
database as a collection of millions of host entries.
 Each host entry defines the mapping between a set of domain

names and IP addresses.
 In a mathematical sense, a host entry is an equivalence class of

domain names and IP addresses.

Carnegie Mellon

22

Properties of DNS Mappings
 Can explore properties of DNS mappings using
nslookup

 Output edited for brevity

 Each host has a locally defined domain name
localhost which always maps to the loopback
address 127.0.0.1

 Use hostname to determine real domain name of
local host:

linux> nslookup localhost
Address: 127.0.0.1

linux> hostname
whaleshark.ics.cs.cmu.edu

Carnegie Mellon

23

Properties of DNS Mappings
(cont)

 Simple case: one-to-one mapping between domain
name and IP address:

 Multiple domain names mapped to the same IP
address:

linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

linux> nslookup cs.mit.edu
Address: 18.62.1.6
linux> nslookup eecs.mit.edu
Address: 18.62.1.6

Carnegie Mellon

24

Properties of DNS Mappings
(cont)

 Multiple domain names mapped to multiple IP
addresses:

 Some valid domain names don’t map to any IP
address:

linux> nslookup www.twitter.com
Address: 199.16.156.6
Address: 199.16.156.70
Address: 199.16.156.102
Address: 199.16.156.230

linux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70

linux> nslookup ics.cs.cmu.edu
*** Can't find ics.cs.cmu.edu: No answer

Carnegie Mellon

25

(3) Internet Connections
 Clients and servers communicate by sending

streams of bytes over connections. Each connection
is:
 Point-to-point: connects a pair of processes.
 Full-duplex: data can flow in both directions at the same time,
 Reliable: stream of bytes sent by the source is eventually

received by the destination in the same order it was sent.

 A socket is an endpoint of a connection
 Socket address is an IPaddress:port pair

 A port is a 16-bit integer that identifies a process:
 Ephemeral port: Assigned automatically by client kernel

when client makes a connection request.
 Well-known port: Associated with some service provided by a

server (e.g., port 80 is associated with Web servers)

Carnegie Mellon

26

Well-known Ports and Service
Names

 Popular services have permanently assigned
well-known ports and corresponding well-known
service names:
 echo server: 7/echo
 ssh servers: 22/ssh
 email server: 25/smtp
 Web servers: 80/http

 Mappings between well-known ports and
service names is contained in the file
/etc/services on each Linux machine.

Carnegie Mellon

27

Anatomy of a Connection
 A connection is uniquely identified by the

socket addresses of its endpoints (socket pair)
 (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Carnegie Mellon

28

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Carnegie Mellon

29

Sockets Interface
 Set of system-level functions used in

conjunction with Unix I/O to build network
applications.

 Created in the early 80’s as part of the original
Berkeley distribution of Unix that contained an
early version of the Internet protocols.

 Available on all modern systems
 Unix variants, Windows, OS X, IOS, Android, ARM

Carnegie Mellon

30

Client Server

Sockets
 What is a socket?

 To the kernel, a socket is an endpoint of communication
 To an application, a socket is a file descriptor that lets the

application read/write from/to the network
 Remember: All Unix I/O devices, including networks,

are modeled as files
 Clients and servers communicate with each

other by reading from and writing to socket
descriptors

 The main distinction between regular file I/O
and socket I/O is how the application “opens”
the socket descriptors

clientfd serverfd

Carnegie Mellon

31

Socket Address Structures
 Generic socket address:

 For address arguments to connect, bind, and accept
 Necessary only because C did not have generic (void *) pointers

when the sockets interface was designed
 For casting convenience, we adopt the Stevens convention:
 typedef struct sockaddr SA;

struct sockaddr {
 uint16_t sa_family; /* Protocol family */
 char sa_data[14]; /* Address data. */
};

sa_family

Family Specific

Carnegie Mellon

32

Socket Address Structures
 Internet-specific socket address:

 Must cast (struct sockaddr_in *) to (struct sockaddr
*) for functions that take socket address arguments.

0 0 0 0 0 0 0 0
sa_family

Family Specific

struct sockaddr_in {
 uint16_t sin_family; /* Protocol family (always AF_INET) */
 uint16_t sin_port; /* Port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */
};

sin_port

AF_INET

sin_addr

sin_family

Carnegie Mellon

33

5. Drop client4. Disconnect
client

3. Exchange
data

2. Start client 1. Start server

Client
/
Server
Sessio
n

Sockets
Interfa

ce
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

34

Client
/
Server
Sessio
n

Sockets
Interfa

ce
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

35

Host and Service Conversion:
getaddrinfo
 getaddrinfo is the modern way to convert string

representations of hostnames, host addresses,
ports, and service names to socket address
structures.
 Replaces obsolete gethostbyname and getservbyname

funcs.

 Advantages:
 Reentrant (can be safely used by threaded programs).
 Allows us to write portable protocol-independent code

 Works with both IPv4 and IPv6

 Disadvantages
 Somewhat complex
 Fortunately, a small number of usage patterns suffice in most

cases.

Carnegie Mellon

36

Host and Service Conversion:
getaddrinfo

 Given host and service, getaddrinfo returns
result that points to a linked list of addrinfo
structs, each of which points to a corresponding
socket address struct, and which contains
arguments for the sockets interface functions.

 Helper functions:
 freeadderinfo frees the entire linked list.
 gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */
 const char *service, /* Port or service name */
 const struct addrinfo *hints,/* Input parameters */
 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

Carnegie Mellon

37

Linked List Returned by
getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

 Clients: walk this list, trying each socket address in
turn, until the calls to socket and connect succeed.

 Servers: walk the list until calls to socket and bind
succeed.

Carnegie Mellon

38

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo
contains arguments that can be passed directly to
socket function.

 Also points to a socket address struct that can be
passed directly to connect and bind functions.

struct addrinfo {
 int ai_flags; /* Hints argument flags */
 int ai_family; /* First arg to socket function */
 int ai_socktype; /* Second arg to socket function */
 int ai_protocol; /* Third arg to socket function */
 char *ai_canonname; /* Canonical host name */
 size_t ai_addrlen; /* Size of ai_addr struct */
 struct sockaddr *ai_addr; /* Ptr to socket address structure */
 struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

Carnegie Mellon

39

Host and Service Conversion:
getnameinfo
 getnameinfo is the inverse of getaddrinfo,

converting a socket address to the corresponding
host and service.
 Replaces obsolete gethostbyaddr and getservbyport

funcs.
 Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
 char *host, size_t hostlen, /* Out: host */
 char *serv, size_t servlen, /* Out: service */
 int flags); /* optional flags */

Carnegie Mellon

40

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{
 struct addrinfo *p, *listp, hints;
 char buf[MAXLINE];
 int rc, flags;

 /* Get a list of addrinfo records */
 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_family = AF_INET; /* IPv4 only */
 hints.ai_socktype = SOCK_STREAM; /* Connections only */
 if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
 exit(1);
 }

hostinfo.c

Carnegie Mellon

41

Conversion Example (cont)

 /* Walk the list and display each IP address */
 flags = NI_NUMERICHOST; /* Display address instead of name */
 for (p = listp; p; p = p->ai_next) {
 Getnameinfo(p->ai_addr, p->ai_addrlen,
 buf, MAXLINE, NULL, 0, flags);
 printf("%s\n", buf);
 }

 /* Clean up */
 Freeaddrinfo(listp);

 exit(0);
} hostinfo.c

Carnegie Mellon

42

Running hostinfo
whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

Carnegie Mellon

43

Next time
 Using getaddrinfo for host and service

conversion
 Writing clients and servers
 Writing Web servers!

Carnegie Mellon

44

Basic Internet Components
 Internet backbone:

 collection of routers (nationwide or worldwide) connected by
high-speed point-to-point networks

 Internet Exchange Points (IXP):
 router that connects multiple backbones (often referred to as

peers)
 Also called Network Access Points (NAP)

 Regional networks:
 smaller backbones that cover smaller geographical areas

(e.g., cities or states)
 Point of presence (POP):

 machine that is connected to the Internet
 Internet Service Providers (ISPs):

 provide dial-up or direct access to POPs

Carnegie Mellon

45

Internet Connection Hierarchy
IXP IXP

Backbone BackboneBackboneBackbone

IXP

POP POP POP

Regional net

POPPOP POP

POPPOP

Small Business

Big BusinessISP

POP POP POP POP

Pgh employee

Cable
modem

DC employee

POP

T3

T1

ISP (for individuals)

POP

DSLT1

Colocation
sites

Private
“peering”

agreements
between

two backbone
companies

often bypass
IXP

Carnegie Mellon

46

IP Address Structure
 IP (V4) Address space divided into classes:

 Network ID Written in form w.x.y.z/n
 n = number of bits in host address
 E.g., CMU written as 128.2.0.0/16

 Class B address
 Unrouted (private) IP addresses:

10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Class A
Class B
Class C
Class D
Class E

0 1 2 3 8 16 24 31
0 Net ID Host ID

Host ID
Host IDNet ID

Net ID

Multicast address
Reserved for experiments

1 0
1 01

1 1 01
1 1 11

Carnegie Mellon

47

Evolution of Internet
 Original Idea

 Every node on Internet would have unique IP address
 Everyone would be able to talk directly to everyone

 No secrecy or authentication
 Messages visible to routers and hosts on same LAN
 Possible to forge source field in packet header

 Shortcomings
 There aren't enough IP addresses available
 Don't want everyone to have access or knowledge of all

other hosts
 Security issues mandate secrecy & authentication

Carnegie Mellon

48

Evolution of Internet: Naming
 Dynamic address assignment

 Most hosts don't need to have known address
 Only those functioning as servers

 DHCP (Dynamic Host Configuration Protocol)
 Local ISP assigns address for temporary use

 Example:
 Laptop at CMU (wired connection)

 IP address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
 Assigned statically

 Laptop at home
 IP address 192.168.1.5
 Only valid within home network

Carnegie Mellon

49

Evolution of Internet: Firewalls

 Firewalls
 Hides organizations nodes from rest of Internet
 Use local IP addresses within organization
 For external service, provides proxy service

1. Client request: src=10.2.2.2, dest=216.99.99.99
2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
3. Server responds: src=216.99.99.99, dest=176.3.3.3
4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Corporation X

Firewal
l

Internet

10.2.2.2
1
4 2

3

176.3.3.3

216.99.99.99

	Network Programming: Part I 15-213: Introduction to Computer S
	A Client-Server Transaction
	Hardware Organization of a Network Host
	Computer Networks
	Lowest Level: Ethernet Segment
	Next Level: Bridged Ethernet Segment
	Conceptual View of LANs
	Next Level: internets
	Logical Structure of an internet
	The Notion of an internet Protocol
	What Does an internet Protocol Do?
	Transferring internet Data Via Encapsulation
	Other Issues
	Global IP Internet (upper case)
	Hardware and Software Organization of an Internet Application
	A Programmer’s View of the Internet
	Aside: IPv4 and IPv6
	(1) IP Addresses
	Dotted Decimal Notation
	(2) Internet Domain Names
	Domain Naming System (DNS)
	Properties of DNS Mappings
	Properties of DNS Mappings (cont)
	Properties of DNS Mappings (cont) (2)
	(3) Internet Connections
	Well-known Ports and Service Names
	Anatomy of a Connection
	Using Ports to Identify Services
	Sockets Interface
	Sockets
	Socket Address Structures
	Socket Address Structures (2)
	Sockets Interface (2)
	Sockets Interface (3)
	Host and Service Conversion: getaddrinfo
	Host and Service Conversion: getaddrinfo (2)
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Host and Service Conversion: getnameinfo
	Conversion Example
	Conversion Example (cont)
	Running hostinfo
	Next time
	Basic Internet Components
	Internet Connection Hierarchy
	IP Address Structure
	Evolution of Internet
	Evolution of Internet: Naming
	Evolution of Internet: Firewalls

