Machine-Level Programming |: Basics

Susmit Shannigrahi

Adapted from CMU slides

Today: Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
[|

Arithmetic & logical operations

Intel x86 Processors

m Dominate laptop/desktop/server market

m Evolutionary design

= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

= Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!
= |n terms of speed. Less so for low power.

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
= First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

= First 32 bit Intel processor, referred to as I1A32
= Added “flat addressing”, capable of running Unix

m Pentium4E 2004 125M 2800-3800
= First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291M 1060-3500
= First multi-core Intel processor

m Corei7 2008 731M 1700-3900

= Four cores (our shark machines)

Intel x86 Processors, cont.

m Machine Evolution S _ -
Integrated‘Memory Controller:-:3:Ch DDR3:

= 386 1985 0.3M

= Pentium 1993 3.1M

" Pentium/MMX 1997 4.5M Core 0 Core 1 Core2 Core3 -
= PentiumPro 1995 6.5M

" Pentium Il 1999 8.2M

= Pentium 4 2001 42M o]

= Core 2 Duo 2006 291M g Shared L3 Cache

= Corei”/ 2008 731M

m Added Features

" |nstructions to support multimedia operations

® |nstructions to enable more efficient conditional operations
® Transition from 32 bits to 64 bits

= More cores

2015 State of the Art

= Corei7 Broadwell 2015

m Desktop Model

= 4 cores 4
. PCle Gen3

= 3.3-3.8GHz o — S

= 65W , @ R Sl T B
m Server Model : 331‘2 _ oow (8 wow 8 wow

= 8 cores | '

" |ntegrated I/O [m ‘ {

= 2-2.6 GHz

= 45W

x86 Clones: Advanced Micro Devices
(AMD)

m Historically

= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

m Recent Years

" |Intel got its act together
= Leads the world in semiconductor technology
= AMD has fallen behind
= Relies on external semiconductor manufacturer

Intel’s 64-Bit History
m 2001: Intel Attempts Radical Shift from IA32 to 1A64

= Totally different architecture (Itanium)
= Executes |IA32 code only as legacy
= Performance disappointing

m 2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to IA32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Our Coverage

m |IA32
= The traditional x86
= For 15/18-213: RIP, Summer 2015

m Xx86-64

= The standard
" shark> gcc hello.c
" shark> gcc —m64 hello.c

m Presentation

= Book covers x86-64
= Web aside on 1A32

= We will only cover x86-64

Today: Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
[|

Arithmetic & logical operations

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
or write assembly/machine code.

= Examples: instruction set specification, registers.
m Microarchitecture: Implementation of the architecture.

= Examples: cache sizes and core frequency.

m Code Forms:

= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Example ISAs:
" Intel: x86, IA32, Itanium, x86-64
= ARM: Used in almost all mobile phones

1

Assembly/Machine Code View

CPU Memor
Addresses y
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory

« Address of next instruction * Byte addressable array

= Called “RIP” (x86-64) = Code and user data

= Register file = Stack to support procedures

= Heavily used program data
= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching 12

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gcc -Og pl.c p2.c -o p

= Use basic optimizations (-Og) [New to recent versions of GCC]

= Put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

Compiler (gcc -Og -S)

A

Asm program (pl.s p2.s)

Assembler (gcc or as)

Object program (pl.o p2.0) Static libraries

(.a)

Linker (gcc or 1d)

Executable program (p)

13

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y):; sumstore:
pushqg srbx
void sumstore(long x, long y, movq $rdx, S%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y): popg Srbx
*dest = t; ret

Obtain (on shark machine) with command
gcec -Og —-S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

14

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

15

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" |oad data from memory into register
= Store register data into memory

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

16

Object Code

Code for sumstore
m Assembler

0x0400595: _
0x53 " Translates .sinto .o
0x48 = Binary encoding of each instruction
0x89 = Nearly-complete image of executable code
0xd3 o - - .
Oxe8 = Missing linkages between code in different
Ox£f2 files
Oxff m Linker
Oxff .
Oxff ® Resolves references between files

e Total of 14 bytes

0x48 " Combines with static run-time libraries

0x89 e Each instruction
0x03 1, 3, or 5 bytes

Ox5b e Starts at address
Oxc3 0x0400595 = Linking occurs when program begins

execution

= E.g., code formalloc, printf
= Some libraries are dynamically linked

17

Machine Instruction Example

*dest = t;

movqg %rax, (%rbx)
0x40059%9e: 48 89 03

m C Code

= Store value t where designated by
dest
m Assembly
= Move 8-byte value to memory
= Quad words in x86-64 parlance

= Operands:
t: Register $rax

dest: Register $rbx
*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
= Stored at address 0x40059e

18

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595:
400596:
400599:
40059e:
4005al:
4005a2:

53

48 89 d3

e8 £f2 ff ff ff
48 89 03

5b

c3

push
mov
callq
mov
pPop
retq

$rbx

$rdx, $rbx
400590 <plus>
%$rax, (%rbx)
%$rbx

m Disassembler

objdump -d sum

= Useful tool for examining object code

= Analyzes bit pattern of series of instructions

= Produces approximate rendition of assembly code

= Can berunon either a.out (complete executable) or . o file

19

Alternate Disassembly
Disassembled

Object

0x0400595:
0x53
0x48
0x89
0xd3
Oxe8
0xf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b
0xc3

Dump of assembler code for function sumstore:

0x0000000000400595
0x0000000000400596
0x0000000000400599
0x000000000040059%e
0x00000000004005a1
0x00000000004005a2

<+0>: push $rbx

<+1>: mov $rdx, $rbx

<+4>: callg 0x400590 <plus>
<+9>: mov %$rax, (%rbx)
<+12>:pop $rbx
<+13>:retq

m Within gdb Debugger

gdb sum

disassemble sumstore

= Disassemble procedure
x/14xb sumstore
= Examine the 14 bytes starting at sumstore

20

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD. EXE : file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <. text>:

30001000 :

30001001 : , . .

30001003 - .Reverse englneerlrjg forbidden by
30001005 Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

21

Today: Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
H

Arithmetic & logical operations

x86-64 Integer Registers

srax %eax
Srbx %ebx
srcx %ecx
srdx $edx
rsi %esi
srdi sedi
Irsp $esp
srbp %ebp

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

$r8 $r8d

%r9 $r9d

2rl10 $rlod
srll $rlld
%rl2 $rl2d
%rl3 $rl3d
srld srldd
%rlb5 $rl5d

23

Some History: IA32 Registers

general purpose

A

—

seax %ax %ah %al
secx %cx $ch %cl
Sedx $dx $dh $dl
sebx $bx $bh $bl
zesi $si
Tedi $di
sesp tsp
sebp $bp
Y

16-bit virtual registers
(backwards compatibility)

Origin

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

(mostly obsolete)

24

Moving Data srax

m Moving Data srCX
movq Source, Dest: srdx
o

m Operand Types srbx
* /mmediate: Constant integer data Srsi
= Example: $0x400, $-533 Srdi
= Like C constant, but prefixed with '$ Srsp

= Encoded with 1, 2, or 4 bytes >1h
= Register: One of 16 integer registers °IOP

= Example: $rax, %rl3
P SrN

= But $rsp reserved for special use
= Others have special uses for particular instructions

= Memory: 8 consecutive bytes of memory at address given by register
= Simplest example: (%$rax)

= Various other “address modes”

25

movq Operand Combinations

Source Dest Src,Dest
4 Reg movq $0x4,%rax
Imm
Mem movqg $-147, (%$rax)

movq < Reg Reg movqg %rax, %$rdx
Mem movq %rax, (%rdx)

\ Mem Reg movqg (%rax),%rdx

C Analog
temp = 0x4;
*p = -147;

temp2 = templ;

*p = temp;

temp = *p;

Cannot do memory-memory transfer with a single instruction

26

Simple Memory Addressing Modes

m Normal (R) Mem|[Reg|[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movq (%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) ,Srdx

27

Example of Simple Addressing Modes

void swap

(long *xp, long *yp)

{
long tO
long tl1 =
*xp = tl1;
*yp = t0;

*xp;
*yp;

swap:
movq rdi) , %Frax
movq %$rsi), %rdx
movq $rdx, (%rdi)
movqg $rax, (%rsi)

ret

28

Understanding Swap()

void swap

(long *xp, long *yp)
{
long t0 = *xp;
long tl = *yp;
*xp = tl;
*yp = tO0;
}
Register Value
$rdi Xp
srsi YP swap:
$rax £0 movq
$rdx t1 movq
movq
movq

ret

Memory

Registers

srdi ‘//

srsi

srax

rdx
($rdi), $rax # t0 = *xp
$rsi), %rdx # tl = *yp
$rdx, (%rdi) # *xp = tl
$rax, (%rsi) # *yp = t0

29

Understanding Swap()

Registers

$rdi| 0x120

$rsi 0x100

$rax

$rdx

swap:
movq
movq
movq
movq
ret

$rdi) ,
$rsi) ,
srdx,
rax,

$rax
Srdx
%rdi)
grsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

30

Understanding Swap()

Registers

$rdi| 0x120

$rsi 0x100

$rax 123

$rdx

swap:
movq
movq
movq
movq
ret

%rdi) ,
$rsi) ,
srdx,
rax,

$rax

Srdx
%rdi)
grsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

KY|

Understanding Swap()

Registers

$rdi| 0x120

$rsi 0x100

$rax 123
$rdx 456

swap:
movq
movq
movq
movq
ret

$rdi) ,
%rsi) ,
srdx,
rax,

$rax

Srdx
%rdi)
grsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

32

Understanding Swap()

Registers

$rdi| 0x120

$rsi 0x100

$rax 123

$rdx 456

swap:
movq
movq
movq
movq
ret

$rdi) ,
$rsi) ,
$rdx,
rax,

$rax

Srdx
$rdi)
grsi)

Memory
Address
456 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

33

Understanding Swap()

Registers

$rdi| 0x120

$rsi 0x100

$rax 123

$rdx 456

swap:
movq
movq
movq
movq
ret

$rdi) ,
$rsi) ,
srdx,
$rax,

$rax

Srdx
%rdi)
$rsi)

Memory
Address
456 | 0x120
0x118
0x110
0x108
0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

34

Simple Memory Addressing Modes

m Normal (R) Mem|[Reg|[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movq (%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) ,Srdx

35

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S)

= Rb: Baseregister: Any of 16 integer registers

= Ri: Index register: Any, except for $rsp
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases
(Rb,Ri)
D(Rb,Ri)
(Rb,Ri,S)

Mem
Mem
Mem

Reg
Reg
Reg

Rb]
Rb]
Rb]

Mem[Reg[Rb]+S*Reg[Ri]+ D]

= D: Constant “displacement” 1, 2, or 4 bytes

+Reg[Ri]]
+Reg[Ri]+D]
+S*Reg|[Ri]]

36

Address Computation Examples

Srdx 0x£000

$rcx 0x0100

Expression Address Computation Address

0x8 (%$rdx) 0xf000 + 0x8 0x£f008
srdx, $rcx) 0x£f000 + 0x100 0x£100
%$rdx,%rcx,4) 0x£f000 + 4*0x100 |0x£f400
0x80 (, %$rdx, 2) 2*0x£000 + 0x80 0x1e080

Today: Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

Address Computation Instruction

m leaqSrc, Dst

= Srcis address mode expression

= Set Dst to address denoted by expression

m Uses

= Computing addresses without a memory reference
= E.g., translationofp = &x[i];

= Computing arithmetic expressions of the form x + k*y

= k=1,2,4,0r8

m Example

long ml2 (long x)
{

return x*12;

}

Converted to ASM by compiler:

leaqg (%rdi,%rdi,2), %$rax # t <- x+x*2
salg $2, %rax # return t<<2

39

Some Arithmetic Operations

m Two Operand Instructions:

Format Computation
addqg Src,Dest Dest = Dest + Src
subg Src,Dest Dest = Dest — Src
imulg Src,Dest Dest = Dest * Src

salqg Src,Dest Dest = Dest << Src Also called shlg
sarqg Src,Dest Dest = Dest >> Src Arithmetic
shrqg Src,Dest Dest = Dest >> Src Logical

XOrqg Src,Dest Dest = Dest A Src

andqg Src,Dest Dest = Dest & Src

orq Src,Dest Dest = Dest | Src

m Watch out for argument order!
m No distinction between signed and unsigned int (why?)

Some Arithmetic Operations

m One Operand Instructions

incq
decq

negq
notqg

Dest
Dest
Dest
Dest

Dest = Dest + 1

Dest = Dest — 1
Dest = — Dest
Dest = ~Dest

m See book for more instructions

41

Arithmetic Expression Example

long arith
(long x, long y, long z)

{

long tl1 = x+y;
long t2 = z+tl;
long t3 = x+4;

long t4 =y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

arith:
leaq $rdi,%rsi), %Srax
addq $rdx, S%Srax
leaq %$rsi,%rsi,2), %rdx
salqg $4, %$rdx
leaq 4 (%rdi,%$rdx), %rcx
imulqg Ircx, 3Irax
ret

Interesting Instructions
= Jleaq: address computation
= salgq:shift
= imulgq: multiplication

= But, only used once

42

Understanding Arithmetic Expression
Example

long arith

(long x, long y, long z)

{
long tl1
long t2
long t3
long t4 =
long t5 =
long rval

xX+y;

z+tl ;

x+4;

y * 48;

t3 + t4;

= t2 * t5;

return rval;

arith:
leaq %$rdi,%$rsi), %$rax # tl
addqg $rdx, %rax # t2
leaq %rsi,%$rsi,2), %rdx
salqg $4, %$rdx # t4
leaq 4 (%rdi,%rdx), %$rcx # t5
imulg $rcx, %$rax # rval
ret

Regser sl

Srdi
grsi
$rdx
$rax
Srdx

$rcx

Argument x
Argument y
Argument z
tl, t2, rval
t4

t5

43

Machine Programming I: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

= The x86-64 move instructions cover wide range of data movement
forms

m Arithmetic

= C compiler will figure out different instruction combinations to
carry out computation

44

	Slide 1: Machine-Level Programming I: Basics Susmit Shannigrahi
	Slide 2: Today: Machine Programming I: Basics
	Slide 3: Intel x86 Processors
	Slide 4: Intel x86 Evolution: Milestones
	Slide 5: Intel x86 Processors, cont.
	Slide 6: 2015 State of the Art
	Slide 7: x86 Clones: Advanced Micro Devices (AMD)
	Slide 8: Intel’s 64-Bit History
	Slide 9: Our Coverage
	Slide 10: Today: Machine Programming I: Basics
	Slide 11: Definitions
	Slide 12: Assembly/Machine Code View
	Slide 13: Turning C into Object Code
	Slide 14: Compiling Into Assembly
	Slide 15: Assembly Characteristics: Data Types
	Slide 16: Assembly Characteristics: Operations
	Slide 17: Object Code
	Slide 18: Machine Instruction Example
	Slide 19: Disassembling Object Code
	Slide 20: Alternate Disassembly
	Slide 21: What Can be Disassembled?
	Slide 22: Today: Machine Programming I: Basics
	Slide 23: x86-64 Integer Registers
	Slide 24: Some History: IA32 Registers
	Slide 25: Moving Data
	Slide 26: movq Operand Combinations
	Slide 27: Simple Memory Addressing Modes
	Slide 28: Example of Simple Addressing Modes
	Slide 29: Understanding Swap()
	Slide 30: Understanding Swap()
	Slide 31: Understanding Swap()
	Slide 32: Understanding Swap()
	Slide 33: Understanding Swap()
	Slide 34: Understanding Swap()
	Slide 35: Simple Memory Addressing Modes
	Slide 36: Complete Memory Addressing Modes
	Slide 37: Address Computation Examples
	Slide 38: Today: Machine Programming I: Basics
	Slide 39: Address Computation Instruction
	Slide 40: Some Arithmetic Operations
	Slide 41: Some Arithmetic Operations
	Slide 42: Arithmetic Expression Example
	Slide 43: Understanding Arithmetic Expression Example
	Slide 44: Machine Programming I: Summary

