
Carnegie Mellon

1

Bits, Bytes, Integers, and Floats

Instructor:
Susmit Shannigrahi

Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s
Perspective, Third Edition

Carnegie Mellon

2

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

3

Recap: Everything is bits
 Each bit is 0 or 1
 By encoding/interpreting sets of bits in various ways

 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

 Why bits? Electronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

Carnegie Mellon

4

For example, can count in binary
 Base 2 Number Representation

 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Carnegie Mellon

5

Encoding Byte Values
 Byte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 Write FA1D37B16 in C as

 0xFA1D37B
 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Bin
ary

Carnegie Mellon

6

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Carnegie Mellon

7

Boolean Algebra
 Developed by George Boole in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
 A&B = 1 when both A=1 and

B=1

Or
 A|B = 1 when either A=1 or

B=1

Not
 ~A = 1 when

A=0

Exclusive-Or (Xor)
 A^B = 1 when either A=1 or B=1, but not

both

Carnegie Mellon

8

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
 Summary

Carnegie Mellon

9

Encoding Integers

Integer data type of w bits → A bit vector as either x, to
denote the entire vector, or as [xw−1, xw−2, . . . , x0] to represent individual bits

Carnegie Mellon

10

Unsigned representation of
Integers

Integer data type of w bits → A bit vector as either x, to
denote the entire vector, or as [xw−1, xw−2, . . . , x0] to represent individual bits

Carnegie Mellon

11

Two’s complement → Signed Representation

 short int x = 15213;
 short int y = -15213;

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative
 1 for negative

B2T (X)   xw 1 2w 1  xi 2
i

i0

w 2

B2U(X)  xi 2
i

i0

w 1


Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Carnegie Mellon

12

Signed representation of
Integers

Integer data type of w bits → A bit vector as either x, to
denote the entire vector, or as [xw−1, xw−2, . . . , x0] to represent individual bits

Carnegie Mellon

13

Two-complement Encoding Example (Cont.)
 x = 15213: 00111011 01101101
 y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

14

Numeric Ranges
 Unsigned Values

 UMin = 0
000…0

 UMax = 2w – 1
111…1

 Two’s Complement Values
 TMin = –2w–1

100…0
 TMax = 2w–1 – 1

011…1
 Other Values

 Minus 1
111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

Carnegie Mellon

15

Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range
 UMax = 2 * TMax

+ 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
 #include <limits.h>
 Declares constants, e.g.,

 ULONG_MAX
 LONG_MAX
 LONG_MIN

 Values platform specific

Carnegie Mellon

16

Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for nonnegative
values

 Uniqueness
 Every bit pattern represents

unique integer value
 Each representable integer has

unique bit encoding
  Can Invert Mappings

 U2B(x) = B2U-1(x)
 Bit pattern for unsigned

integer
 T2B(x) = B2T-1(x)

 Bit pattern for two’s comp
integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Carnegie Mellon

17

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

18

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
 Keep bit representations and reinterpret

Carnegie Mellon

19

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

20

Signed vs. Unsigned in C
 Constants

 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U
 Casting

 Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

Carnegie Mellon

21

0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U> signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1
2147483647U -2147483647-1
-1 -2
(unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U

Carnegie Mellon

22

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

23

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings
 Summary

Carnegie Mellon

24

Unsigned Addition

 Standard Addition Function
 Ignores carry output

 Implements Modular Arithmetic
s = UAddw(u , v) =

u + v mod 2w

• • •
• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

Carnegie Mellon

25

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition
 4-bit integers u, v
 Compute true sum

Add4(u , v)
 Values increase linearly

with u and v
 Forms planar surface

Add4(u , v)

u

v

Carnegie Mellon

26

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around
 If true sum ≥ 2w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Carnegie Mellon

27

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior
 Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);

 t = u + v
 Will give s == t

• • •
• • •

u

v+
• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Carnegie Mellon

28

Multiplication
 Goal: Computing Product of w-bit numbers x, y

 Either signed or unsigned
 But, exact results can be bigger than w bits

 Unsigned: up to 2w bits
 Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

 Two’s complement min (negative): Up to 2w-1 bits
 Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

 Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

 Result range: x * y ≤ (–2w–1) 2 = 22w–2

 So, maintaining exact results…
 would need to keep expanding word size with each product computed
 is done in software, if needed

 e.g., by “arbitrary precision” arithmetic packages

Carnegie Mellon

29

Unsigned Multiplication in C

 Standard Multiplication Function
 Ignores high order w bits

 Implements Modular Arithmetic
UMultw(u , v) = u · v mod 2w

• • •
• • •

u

v*
• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)
• • •

Carnegie Mellon

30

Signed Multiplication in C

 Standard Multiplication Function
 Ignores high order w bits
 Some of which are different for signed

vs. unsigned multiplication
 Lower bits are the same

• • •
• • •

u

v*
• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)
• • •

Carnegie Mellon

31

Power-of-2 Multiply with Shift
 Operation

 u << k gives u * 2k

 Both signed and unsigned

 Examples
 u << 3 == u * 8
 (u << 5) – (u << 3) == u * 24
 Most machines shift and add faster than multiply

 Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*
u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Carnegie Mellon

32

Unsigned Power-of-2 Divide with Shift
 Quotient of Unsigned by Power of 2

 u >> k gives  u / 2k 
 Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/
u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0

Carnegie Mellon

33

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

Floating Point

35

Carnegie Mellon

Today: Floating Point
 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

36

Carnegie Mellon

Fractional binary numbers
 What is 1011.1012?

37

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

Carnegie Mellon

• • •

Fractional Binary Numbers

Representation
 Bits to right of “binary point” represent fractional powers of 2
 Represents rational number:

• • •

38

Carnegie Mellon

Fractional Binary Numbers:
Examples

 Value Representation
5 3/4 101.112

 2 7/8 010.1112

 1 7/16 001.01112

 Observations
 Divide by 2 by shifting right (unsigned)
 Multiply by 2 by shifting left
 Numbers of form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … 1.0➙
 Use notation 1.0 – ε

39

Carnegie Mellon

Representable Numbers
 Limitation #1

 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit representations

 Value Representation
 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2

 Limitation #2
 Just one setting of binary point within the w bits

 Limited range of numbers (very small values? very large?)

40

Carnegie Mellon

Today: Floating Point
 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

41

Carnegie Mellon

IEEE Floating Point
 IEEE Standard 754

 Established in 1985 as uniform standard for floating point arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns
 Nice standards for rounding, overflow, underflow
 Hard to make fast in hardware

 Numerical analysts predominated over hardware designers in defining
standard

42

Carnegie Mellon

 Numerical Form:
(–1)s M 2E

 Sign bit s determines whether number is negative or positive
 Significand M normally a fractional value in range [1.0,2.0).
 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 exp field encodes E (but is not equal to E)
 frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac

43

Carnegie Mellon

Precision options
 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

44

Carnegie Mellon

“Normalized” Values
 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E = Exp – Bias
 Exp: unsigned value of exp field
 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M = 1.xxx…x2

 xxx…x: bits of frac field
 Minimum when frac=000…0 (M = 1.0)
 Maximum when frac=111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”

v = (–1)s M 2E

45

Example

Step 1: Convert 9.75 to Binary

9.75 in decimal is represented as:

9 in binary: 1001

0.75 in binary: To convert this, repeatedly multiply by 2 and track the whole number part:

0.75×2=1.50 → whole part = 1

0.5×2=1.00→ whole part = 1

So, 0.75 in binary is 0.11.

Thus, 9.75 in binary is:

1001.11 or 1.00111×2^3 (in normalized scientific notation).

46

Example – contd.
Step 2: Breaking into IEEE 754 Components

Sign bit (S): Since 9.75 is positive, the sign bit is 0.

Exponent (E): The actual exponent here is 3, because we shifted the decimal point three
places to the left to normalize the number.

Mantissa (M): The mantissa is the binary digits after the leading 1 (which is implied in
IEEE 754). So, the mantissa is 00111.

Step 3: Encode the Exponent with Bias

For IEEE 754 single-precision, the exponent is stored with a bias of 127. So, to store the
exponent, we add the bias to the actual exponent:

Encoded Exponent = Actual Exponent + Bias

Encoded Exponent = 3 + 127 = 130

In binary, 130 is represented as: 10000010

47

Example

Step 4: Assembling the Final IEEE 754 Representation

Now, let's combine the components:

Sign bit: 0

Exponent: 10000010 (which is 130 in decimal)

Mantissa: 00111000000000000000000 (with 23 bits)

So, the 32-bit IEEE 754 single-precision representation of 9.75
is:

0 10000010 00111000000000000000000

Carnegie Mellon

48

Normalized Encoding Example
 Value: float F = 15213.0;

 1521310 = 111011011011012
 = 1.11011011011012 x 213

 Significand
M = 1.11011011011012

frac = 110110110110100000000002

 Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000
s exp frac

v = (–1)s M 2E

E = Exp – Bias

49

Carnegie Mellon

Denormalized Values
 Condition: exp = 000…0

 Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac
 Cases

 exp = 000…0, frac = 000…0
 Represents zero value
 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac ≠ 000…0
 Numbers closest to 0.0
 Equispaced

v = (–1)s M 2E

E = 1 – Bias

50

Carnegie Mellon

Special Values
 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0
 Represents value  (infinity)
 Operation that overflows
 Both positive and negative
 E.g., 1.0/0.0 = −1.0/−0.0 = +, 1.0/−0.0 = −

 Case: exp = 111…1, frac ≠ 000…0
 Not-a-Number (NaN)
 Represents case when no numeric value can be determined
 E.g., sqrt(–1),  − ,   0

51

Normalized vs Denormalized

52

Carnegie Mellon

Visualization: Floating Point Encodings

+−

0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

53

Carnegie Mellon

Today: Floating Point
Background: Fractional binary numbers
 IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary

54

Carnegie Mellon

Tiny Floating Point Example

 8-bit Floating Point Representation
 the sign bit is in the most significant bit
 the next four bits are the exponent, with a bias of 7
 the last three bits are the frac

 Same general form as IEEE Format
 normalized, denormalized
 representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

55

Carnegie Mellon

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

v = (–1)s M 2E

n: E = Exp –
Bias

d: E = 1 – Bias

56

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

Carnegie Mellon

Distribution of Values
 6-bit IEEE-like format

 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero.
 8 values

s exp frac

1 3-bits 2-bits

57

Carnegie Mellon

Distribution of Values (close-up
view)

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

58

Carnegie Mellon

Special Properties of the IEEE
Encoding

 FP Zero Same as Integer Zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits
 Must consider −0 = 0
 NaNs problematic

 Will be greater than any other values
 What should comparison yield?

 Otherwise OK
 Denorm vs. normalized
 Normalized vs. infinity

59

Carnegie Mellon

Today: Floating Point
 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

60

Carnegie Mellon

Floating Point Operations: Basic
Idea

 x +f y = Round(x + y)

 x f y = Round(x  y)

 Basic idea
 First compute exact result
 Make it fit into desired precision

 Possibly overflow if exponent too large
 Possibly round to fit into frac

61

Carnegie Mellon

Rounding
 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –
$1.50
 Towards zero $1 $1 $1 $2 –$1
 Round down (−) $1 $1 $1 $2 –$2
 Round up (+) $2 $2 $2 $3 –$1
 Nearest Even (default) $1 $2 $2 $2 –$2

62

Carnegie Mellon

Closer Look at Round-To-Even
 Default Rounding Mode

 Hard to get any other kind without dropping into assembly
 All others are statistically biased

 Sum of set of positive numbers will consistently be over- or under-
estimated

 Applying to Other Decimal Places / Bit Positions
 When exactly halfway between two possible values

 Round so that least significant digit is even
 E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)

63

Carnegie Mellon

Rounding Binary Numbers
 Binary Fractional Numbers

 “Even” when least significant bit is 0
 “Half way” when bits to right of rounding position = 100…2

 Examples
 Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (1/2—up) 3
2 5/8 10.101002 10.102 (1/2—down) 2 1/2

64

Carnegie Mellon

FP Multiplication
 (–1)s1 M1 2E1 x (–1)s2 M2 2E2

 Exact Result: (–1)s M 2E

 Sign s: s1 ^ s2
 Significand M: M1 x M2
 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E
 If E out of range, overflow
 Round M to fit frac precision

 Implementation
 Biggest chore is multiplying significands

65

Carnegie Mellon

Floating Point Addition
 (–1)s1 M1 2E1 + (-1)s2 M2 2E2

 Assume E1 > E2

 Exact Result: (–1)s M 2E

 Sign s, significand M:
 Result of signed align & add

 Exponent E: E1

 Fixing
 If M ≥ 2, shift M right, increment E
 if M < 1, shift M left k positions, decrement E by k
 Overflow if E out of range
 Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+
(–1)s M

Get binary points lined up

66

Carnegie Mellon

Mathematical Properties of FP Add
 Compare to those of Abelian Group

 Closed under addition?
 But may generate infinity or NaN

 Commutative?
 Associative?

 Overflow and inexactness of rounding
 (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

 0 is additive identity?
 Every element has additive inverse?

 Yes, except for infinities & NaNs
 Monotonicity

 a ≥ b a+c ≥ b+c?⇒
 Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost

67

Carnegie Mellon

Mathematical Properties of FP Mult
 Compare to Commutative Ring

 Closed under multiplication?
 But may generate infinity or NaN

 Multiplication Commutative?
 Multiplication is Associative?

 Possibility of overflow, inexactness of rounding
 Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

 1 is multiplicative identity?
 Multiplication distributes over addition?

 Possibility of overflow, inexactness of rounding
 1e20*(1e20-1e20)= 0.0, 1e20*1e20 – 1e20*1e20 = NaN

 Monotonicity
 a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?

 Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost

68

Carnegie Mellon

Today: Floating Point
 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

69

Carnegie Mellon

Floating Point in C
 C Guarantees Two Levels
 float single precision
 double double precision

 Conversions/Casting
 Casting between int, float, and double changes bit representation
 double/float → int

 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally sets to TMin

 int → double
 Exact conversion, as long as int has ≤ 53 bit word size

 int → float
 Will round according to rounding mode

70

Carnegie Mellon

Floating Point Puzzles
 For each of the following C expressions, either:

 Argue that it is true for all argument values
 Explain why not true

• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 ⇒ ((d*2) < 0.0)
• d > f ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

71

Carnegie Mellon

Summary
 IEEE Floating Point has clear mathematical properties
 Represents numbers of form M x 2E

 One can reason about operations independent of
implementation
 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity
 Makes life difficult for compilers & serious numerical applications

programmers

	Bits, Bytes, Integers, and Floats
	Today: Bits, Bytes, and Integers
	Recap: Everything is bits
	For example, can count in binary
	Encoding Byte Values
	Example Data Representations
	Boolean Algebra
	Today: Bits, Bytes, and Integers (2)
	Encoding Integers
	Unsigned representation of Integers
	Two’s complement → Signed Representation
	Signed representation of Integers
	Two-complement Encoding Example (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Today: Bits, Bytes, and Integers (3)
	Mapping Between Signed & Unsigned
	Mapping Signed  Unsigned
	Signed vs. Unsigned in C
	Casting Surprises
	Today: Bits, Bytes, and Integers (4)
	Today: Bits, Bytes, and Integers (5)
	Unsigned Addition
	Visualizing (Mathematical) Integer Addition
	Visualizing Unsigned Addition
	Two’s Complement Addition
	Multiplication
	Unsigned Multiplication in C
	Signed Multiplication in C
	Power-of-2 Multiply with Shift
	Unsigned Power-of-2 Divide with Shift
	Today: Bits, Bytes, and Integers (6)
	Floating Point
	Today: Floating Point
	Fractional binary numbers
	Fractional Binary Numbers
	Fractional Binary Numbers: Examples
	Representable Numbers
	Today: Floating Point (2)
	IEEE Floating Point
	Floating Point Representation
	Precision options
	“Normalized” Values
	Slide 45
	Slide 46
	Slide 47
	Normalized Encoding Example
	Denormalized Values
	Special Values
	Slide 51
	Visualization: Floating Point Encodings
	Today: Floating Point (3)
	Tiny Floating Point Example
	Dynamic Range (Positive Only)
	Distribution of Values
	Distribution of Values (close-up view)
	Special Properties of the IEEE Encoding
	Today: Floating Point (4)
	Floating Point Operations: Basic Idea
	Rounding
	Closer Look at Round-To-Even
	Rounding Binary Numbers
	FP Multiplication
	Floating Point Addition
	Mathematical Properties of FP Add
	Mathematical Properties of FP Mult
	Today: Floating Point (5)
	Floating Point in C
	Floating Point Puzzles
	Summary

