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Bits, Bytes, Integers, and Floats

Instructor:
Susmit Shannigrahi

Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s 
Perspective, Third Edition
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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
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Recap: Everything is bits
 Each bit is 0 or 1
 By encoding/interpreting sets of bits in various ways

 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

 Why bits?  Electronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires 

0.0V

0.2V

0.9V

1.1V

0 1 0
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For example, can count in binary
 Base 2 Number Representation

 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104  as 1.11011011011012 X 213
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Encoding Byte Values
 Byte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 Write FA1D37B16 in C as

 0xFA1D37B
 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Bin
ary
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Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8
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Boolean Algebra
 Developed by George Boole in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
  A&B = 1 when both A=1 and 

B=1

Or
  A|B = 1 when either A=1 or 

B=1

Not
  ~A = 1 when 

A=0

Exclusive-Or (Xor)
  A^B = 1 when either A=1 or B=1, but not 

both
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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
 Summary
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Encoding Integers

Integer data type of w bits → A bit vector as either x, to 
denote the entire vector, or as [xw−1, xw−2, . . . , x0 ] to represent individual bits
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Unsigned representation of 
Integers

Integer data type of w bits → A bit vector as either x, to 
denote the entire vector, or as [xw−1, xw−2, . . . , x0 ] to represent individual bits
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Two’s complement → Signed Representation

  short int x =  15213;
  short int y = -15213;

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative
 1 for negative

B2T (X )   xw 1 2w 1  xi 2
i

i0

w 2

B2U(X )  xi 2
i

i0

w 1


Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
y -15213 C4 93 11000100 10010011 
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Signed representation of 
Integers

Integer data type of w bits → A bit vector as either x, to 
denote the entire vector, or as [xw−1, xw−2, . . . , x0 ] to represent individual bits
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Two-complement Encoding Example (Cont.)
  x =      15213: 00111011 01101101
  y =     -15213: 11000100 10010011

Weight 15213 -15213 
1 1 1 1 1 
2 0 0 1 2 
4 1 4 0 0 
8 1 8 0 0 

16 0 0 1 16 
32 1 32 0 0 
64 1 64 0 0 

128 0 0 1 128 
256 1 256 0 0 
512 1 512 0 0 

1024 0 0 1 1024 
2048 1 2048 0 0 
4096 1 4096 0 0 
8192 1 8192 0 0 

16384 0 0 1 16384 
-32768 0 0 1 -32768 

Sum  15213  -15213 
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Numeric Ranges
 Unsigned Values

 UMin = 0
000…0

 UMax =  2w – 1
111…1

  Two’s Complement Values
 TMin =  –2w–1

100…0
 TMax =  2w–1 – 1

011…1
  Other Values

 Minus 1
111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 
TMax 32767 7F FF 01111111 11111111 
TMin -32768 80 00 10000000 00000000 
-1 -1 FF FF 11111111 11111111 
0 0 00 00 00000000 00000000 
 

Values for W = 16
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Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range
 UMax = 2 * TMax 

+ 1 

 W 
 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 

 
 

 C Programming
 #include <limits.h>
 Declares constants, e.g.,

 ULONG_MAX
 LONG_MAX
 LONG_MIN

 Values platform specific
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Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for nonnegative 
values

 Uniqueness
 Every bit pattern represents 

unique integer value
 Each representable integer has 

unique bit encoding
  Can Invert Mappings

 U2B(x)  =  B2U-1(x)
 Bit pattern for unsigned 

integer
 T2B(x)  =  B2T-1(x)

 Bit pattern for two’s comp 
integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
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T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
 Keep bit representations and reinterpret
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Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16
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Signed vs. Unsigned in C
 Constants

 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U
 Casting

 Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;
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0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U> signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression, 
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1 
2147483647U -2147483647-1 
-1 -2 
(unsigned)-1 -2 
 2147483647 2147483648U 
 2147483647 (int) 2147483648U 
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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings
 Summary
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Unsigned Addition

 Standard Addition Function
 Ignores carry output

 Implements Modular Arithmetic
s =  UAddw(u , v) =

u + v  mod 2w

• • •
• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)
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0
2
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8
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14

0
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4

6
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10
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14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition
 4-bit integers u, v
 Compute true sum 

Add4(u , v)
 Values increase linearly 

with u and v
 Forms planar surface

Add4(u , v)

u

v
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Visualizing Unsigned Addition

 Wraps Around
 If true sum ≥ 2w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow
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Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior
 Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);

 t = u + v
 Will give s == t

• • •
• • •

u

v+
• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)
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Multiplication
 Goal: Computing Product of w-bit numbers x, y

 Either signed or unsigned
 But, exact results can be bigger than w bits

 Unsigned: up to 2w bits
 Result range: 0 ≤ x * y ≤ (2w – 1) 2  =  22w – 2w+1 + 1

 Two’s complement min (negative): Up to 2w-1 bits
 Result range: x * y  ≥ (–2w–1)*(2w–1–1)  =  –22w–2 + 2w–1

 Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

 Result range: x * y ≤ (–2w–1) 2  =  22w–2

 So, maintaining exact results…
 would need to keep expanding word size with each product computed
 is done in software, if needed

 e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

 Standard Multiplication Function
 Ignores high order w bits

 Implements Modular Arithmetic
UMultw(u , v) = u   · v  mod 2w

• • •
• • •

u

v*
• • •u · v

• • •
True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)
• • •
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Signed Multiplication in C

 Standard Multiplication Function
 Ignores high order w bits
 Some of which are different for signed 

vs. unsigned multiplication
 Lower bits are the same

• • •
• • •

u

v*
• • •u · v

• • •
True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)
• • •
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Power-of-2 Multiply with Shift
 Operation

 u << k gives u * 2k

 Both signed and unsigned

 Examples
 u << 3 == u * 8
 (u << 5) – (u << 3) == u * 24
 Most machines shift and add faster than multiply

 Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*
u · 2kTrue Product: w+k  bits

Operands: w bits

Discard k  bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••
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Unsigned Power-of-2 Divide with Shift
 Quotient of Unsigned by Power of 2

 u >> k gives   u / 2k 
 Uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 
x >> 1 7606.5 7606 1D B6 00011101 10110110 
x >> 4 950.8125 950 03 B6 00000011 10110110 
x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u

2k/
u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0
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Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
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Today: Floating Point
 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary
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Fractional binary numbers
 What is 1011.1012?
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2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

Carnegie Mellon

• • •

Fractional Binary Numbers

Representation
 Bits to right of “binary point” represent fractional powers of 2
 Represents rational number:

• • •
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Fractional Binary Numbers: 
Examples

 Value Representation
5 3/4 101.112

 2 7/8 010.1112

 1 7/16 001.01112

 Observations
 Divide by 2 by shifting right (unsigned)
 Multiply by 2 by shifting left
 Numbers of form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + …  1.0➙
 Use notation 1.0 – ε
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Representable Numbers
 Limitation #1

 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit representations

 Value Representation
 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2

 Limitation #2
 Just one setting of binary point within the w bits

 Limited range of numbers (very small values?  very large?)
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Today: Floating Point
 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary
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IEEE Floating Point
 IEEE Standard 754

 Established in 1985 as uniform standard for floating point arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns
 Nice standards for rounding, overflow, underflow
 Hard to make fast in hardware

 Numerical analysts predominated over hardware designers in defining 
standard
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 Numerical Form: 
(–1)s M  2E

 Sign bit s determines whether number is negative or positive
 Significand M  normally a fractional value in range [1.0,2.0).
 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 exp field encodes E (but is not equal to E)
 frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac
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Precision options
 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits
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“Normalized” Values
 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E  =  Exp – Bias
 Exp: unsigned value of exp field 
 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M  =  1.xxx…x2

  xxx…x: bits of frac field
 Minimum when frac=000…0 (M = 1.0)
 Maximum when frac=111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”

v = (–1)s M 2E
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Example

Step 1: Convert 9.75 to Binary

9.75 in decimal is represented as: 

9 in binary: 1001

0.75 in binary: To convert this, repeatedly multiply by 2 and track the whole number part:

0.75×2=1.50 → whole part = 1

0.5×2=1.00→ whole part = 1

So, 0.75 in binary is 0.11.

Thus, 9.75 in binary is:

1001.11 or 1.00111×2^3 (in normalized scientific notation).



46

Example – contd.
Step 2: Breaking into IEEE 754 Components

Sign bit (S): Since 9.75 is positive, the sign bit is 0.

Exponent (E): The actual exponent here is 3, because we shifted the decimal point three 
places to the left to normalize the number.

Mantissa (M): The mantissa is the binary digits after the leading 1 (which is implied in 
IEEE 754). So, the mantissa is 00111.

Step 3: Encode the Exponent with Bias

For IEEE 754 single-precision, the exponent is stored with a bias of 127. So, to store the 
exponent, we add the bias to the actual exponent:

Encoded Exponent = Actual Exponent + Bias

Encoded Exponent = 3 + 127 = 130

In binary, 130 is represented as: 10000010
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Example

Step 4: Assembling the Final IEEE 754 Representation

Now, let's combine the components:

Sign bit: 0

Exponent: 10000010 (which is 130 in decimal)

Mantissa: 00111000000000000000000 (with 23 bits)

So, the 32-bit IEEE 754 single-precision representation of 9.75 
is:

0 10000010 00111000000000000000000
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Normalized Encoding Example
 Value: float F = 15213.0;

 1521310  = 111011011011012   
                     = 1.11011011011012 x 213

 Significand
M = 1.11011011011012

frac =   110110110110100000000002

 Exponent
E  = 13
Bias = 127
Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000 
s exp frac

v = (–1)s M 2E

E  =  Exp – Bias
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Denormalized Values
 Condition: exp = 000…0

 Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac
 Cases

  exp = 000…0, frac = 000…0
 Represents zero value
 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac ≠ 000…0
 Numbers closest to 0.0
 Equispaced

v = (–1)s M 2E

E  =  1 – Bias
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Special Values
 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0
 Represents value  (infinity)
 Operation that overflows
 Both positive and negative
 E.g., 1.0/0.0 = −1.0/−0.0 = +,  1.0/−0.0 = −

 Case: exp = 111…1, frac ≠ 000…0
 Not-a-Number (NaN)
 Represents case when no numeric value can be determined
 E.g., sqrt(–1),  − ,   0
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Normalized vs Denormalized
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Visualization: Floating Point Encodings

+−

0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN
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Today: Floating Point
Background: Fractional binary numbers
 IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary
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Tiny Floating Point Example

 8-bit Floating Point Representation
 the sign bit is in the most significant bit
 the next four bits are the exponent, with a bias of 7
 the last three bits are the frac

 Same general form as IEEE Format
 normalized, denormalized
 representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits
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s exp  frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

v = (–1)s M 2E

n: E = Exp – 
Bias

d: E = 1 – Bias
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-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity
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Distribution of Values
 6-bit IEEE-like format

 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero. 
 8 values

s exp frac

1 3-bits 2-bits
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Distribution of Values (close-up 
view)

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity
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Special Properties of the IEEE 
Encoding

 FP Zero Same as Integer Zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits
 Must consider −0 = 0
 NaNs problematic

 Will be greater than any other values
 What should comparison yield?

  Otherwise OK
 Denorm vs. normalized
 Normalized vs. infinity



59

Carnegie Mellon

Today: Floating Point
 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary
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Floating Point Operations: Basic 
Idea

 x +f y = Round(x + y)

 x f y = Round(x  y)

 Basic idea
 First compute exact result
 Make it fit into desired precision

 Possibly overflow if exponent too large
 Possibly round to fit into frac
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Rounding
 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –
$1.50
 Towards zero $1 $1 $1 $2 –$1
 Round down (−) $1 $1 $1 $2 –$2
 Round up (+) $2 $2 $2 $3 –$1
 Nearest Even (default) $1 $2 $2 $2 –$2
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Closer Look at Round-To-Even
 Default Rounding Mode

 Hard to get any other kind without dropping into assembly
 All others are statistically biased

 Sum of set of positive numbers will consistently be over- or under- 
estimated

 Applying to Other Decimal Places / Bit Positions
 When exactly halfway between two possible values

 Round so that least significant digit is even
 E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)
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Rounding Binary Numbers
 Binary Fractional Numbers

 “Even” when least significant bit is 0
 “Half way” when bits to right of rounding position = 100…2

 Examples
 Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (  1/2—up) 3
2 5/8 10.101002 10.102 (  1/2—down) 2 1/2
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FP Multiplication
 (–1)s1 M1  2E1   x   (–1)s2 M2  2E2

 Exact Result: (–1)s M  2E

 Sign s: s1 ^ s2
 Significand M: M1 x  M2
 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E
 If E out of range, overflow 
 Round M to fit frac precision

 Implementation
 Biggest chore is multiplying significands
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Floating Point Addition
 (–1)s1 M1  2E1   +   (-1)s2 M2  2E2

 Assume E1 > E2

 Exact Result: (–1)s M  2E

 Sign s, significand M: 
 Result of signed align & add

 Exponent E: E1

 Fixing
 If M ≥ 2, shift M right, increment E 
 if M < 1, shift M left k positions, decrement E by k
 Overflow if E out of range
 Round M to fit frac precision

(–1)s1 M1 

(–1)s2 M2 

E1–E2

+
(–1)s M

Get binary points lined up
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Mathematical Properties of FP Add
 Compare to those of Abelian Group

 Closed under addition?
 But may generate infinity or NaN

 Commutative? 
 Associative?

 Overflow and inexactness of rounding
 (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

 0 is additive identity? 
 Every element has additive inverse?

 Yes, except for infinities & NaNs
 Monotonicity

 a ≥ b  a+c ≥ b+c?⇒
 Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost
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Mathematical Properties of FP Mult
 Compare to Commutative Ring

 Closed under multiplication?
 But may generate infinity or NaN

 Multiplication Commutative?
 Multiplication is Associative?

 Possibility of overflow, inexactness of rounding
 Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

 1 is multiplicative identity?
 Multiplication distributes over addition?

 Possibility of overflow, inexactness of rounding
 1e20*(1e20-1e20)= 0.0,  1e20*1e20 – 1e20*1e20 = NaN

 Monotonicity
 a ≥ b  & c ≥ 0   ⇒ a * c ≥ b *c?

 Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost
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Today: Floating Point
 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary



69

Carnegie Mellon

Floating Point in C
 C Guarantees Two Levels
 float single precision
 double double precision

 Conversions/Casting
  Casting between int, float, and double changes bit representation
  double/float → int

 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally sets to TMin

  int → double
 Exact conversion, as long as int has ≤ 53 bit word size

  int → float
 Will round according to rounding mode
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Floating Point Puzzles
 For each of the following C expressions, either:

 Argue that it is true for all argument values
 Explain why not true

• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0   ⇒ ((d*2) < 0.0)
• d > f   ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN
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Summary
 IEEE Floating Point has clear mathematical  properties
 Represents numbers of form M x 2E

 One can reason about operations independent of 
implementation
 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity
 Makes life difficult for compilers & serious numerical applications 

programmers
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