Bits, Bytes, Integers, and Floats

Instructor: Susmit Shannigrahi

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

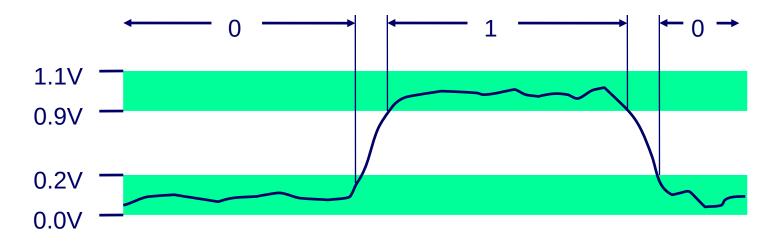
Today: Bits, Bytes, and Integers

Representing information as bits

- Bit-level manipulations
 - Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
 - Representations in memory, pointers, strings

Recap: Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires



For example, can count in binary

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

Byte = 8 bits

- Binary 000000002 to 11111112
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - Oxfa1d37b

He	t De	cimal Binary 0000 0001 0010 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1111 1110
0 1 2 3 4 5 6 7 8 9 A 8 9 A B C D E F	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

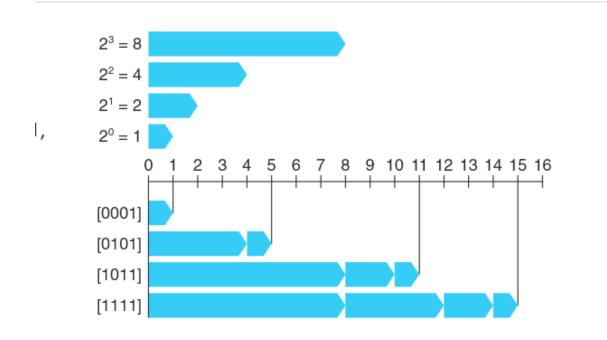
And Or A&B = 1 when both A=1 and A|B = 1 when either A=1 or B=ð B=1 0 0 0 0 0 1 0 **Exclusive-Or (Xor)** Not A^B = 1 when either A=1 or B=1, but not $\sim A = 1$ when both A=0 Λ 0 0 0 0 1

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
 - Summary

Encoding Integers

Integer data type of w bits \rightarrow A bit vector as either x, to denote the entire vector, or as [xw-1, xw-2, ..., x0] to represent individual bits

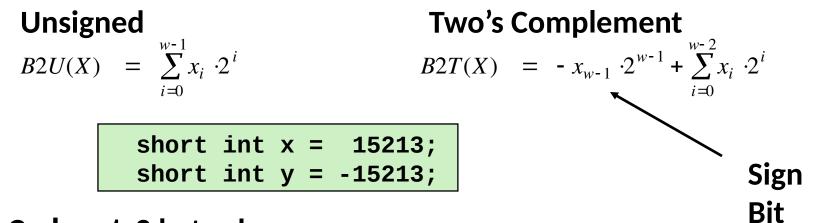


Unsigned representation of Integers

Integer data type of w bits \rightarrow A bit vector as either x, to denote the entire vector, or as [xw-1, xw-2, ..., x0] to represent individual bits

 $\begin{array}{rcl}B2U_4([0001])&=&0\cdot 2^3+0\cdot 2^2+0\cdot 2^1+1\cdot 2^0&=&0+0+0+1&=&1\\B2U_4([0101])&=&0\cdot 2^3+1\cdot 2^2+0\cdot 2^1+1\cdot 2^0&=&0+4+0+1&=&5\\B2U_4([1011])&=&1\cdot 2^3+0\cdot 2^2+1\cdot 2^1+1\cdot 2^0&=&8+0+2+1&=&11\\B2U_4([1111])&=&1\cdot 2^3+1\cdot 2^2+1\cdot 2^1+1\cdot 2^0&=&8+4+2+1&=&15\end{array}$

Two's complement \rightarrow Signed Representation



C short 2 bytes long

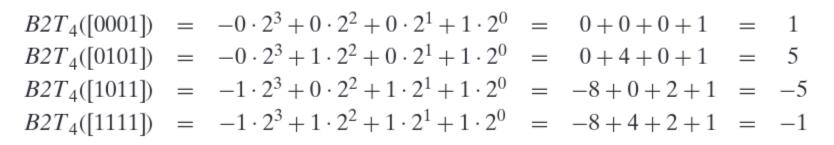
	Decimal	Hex	Binary	
Х	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

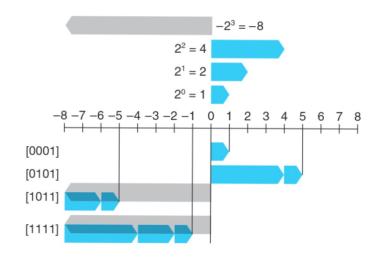
Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Signed representation of Integers

Integer data type of w bits \rightarrow A bit vector as either x, to denote the entire vector, or as [xw-1, xw-2, ..., x0] to represent individual bits





Two-complement Encoding Example (Cont.)

x = y =	15213: -15213:		1011 0100		01101 10011
-					
Weight	15213			-1521	L3
1	1	1		1	1
2	0	0		1	2
4	1	4		0	0
8	1	8		0	0
16	0	0		1	16
32	1	32		0	0
64	1	64		0	0
128	0	0		1	128
256	1	256		0	0
512	1	512		0	0
1024	0	0		1	1024
2048	1	2048		0	0
4096	1	4096		0	0
8192	1	8192		0	0
16384	0	0		1	16384
-32768	0	0		1	-32768
Sum		15213			-15213

Numeric Ranges

- Unsigned Values
 - UMin = 0 000...0
 - $UMax = 2^w 1$ 111...1

Two's Complement Values

TMin = -2^{w-1} 100...0

TMax = $2^{w-1} - 1$ 011...1

Other Values

Minus 1
 111...1

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 00000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	0000000 00000000	

Values for Different Word Sizes

	W					
	8 16 32		32	64		
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615		
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807		
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808		

Observations

- TMin = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Х	B2U(X)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- **T2B(x) = B2T^{-1}(x)**
 - Bit pattern for two's comp integer

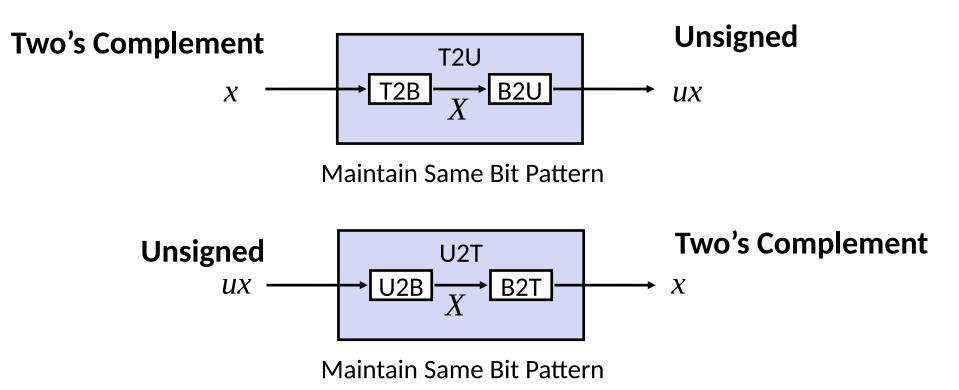
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned



Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits	Signed		Unsigned
0000	0		0
0001	1		1
0010	2		2
0011	3	_	3
0100	4		4
0101	5		5
0110	6		6
0111	7		7
1000	- 8		8
1001	-7		9
1010	- 6		10
1011	- 5	+/- 16	11
1100	- 4		12
1101	- 3		13
1110	-2		14
1111	-1		15

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

0U, 4294967259U

Casting

- Explicit casting between signed & unsigned same as U2T and T2U int tx, ty; unsigned ux, uy; tx = (int) ux; uy = (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
```

$$uy = ty;$$

Casting Surprises

Expression Evaluation

If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned

Including comparison operations <, >, ==, <=, >=

Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Consta	ant ₁	(Constan	1 t 2	Relation	Evaluation
0	0U	==	unsigne	d		
-1	0	<	signed			
-1	0U	>	unsigne	d		
214748	3647	-21474836	47-1	>	signed	
214748	3647U	-21474836	47-1	<	unsigned	
-1	-2	>	signed			
(unsigne	ed)-1	-2	>	unsigne	d	
214748	83647	214748364	48U	<	unsigned	
214748	3647	(int) 21474	183648U	>	signed	

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting

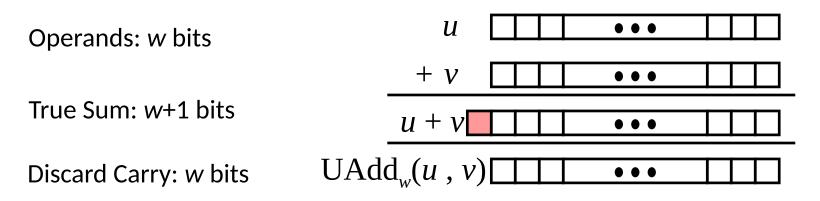
Expanding, truncating

- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
 - Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
 - Summary

Unsigned Addition



Standard Addition Function

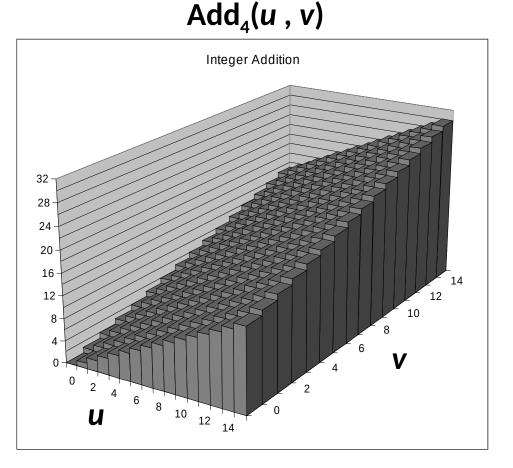
- Ignores carry output
- Implements Modular Arithmetic

s =
$$UAdd_w(u, v)$$
 =
 $u + v \mod 2^w$

Visualizing (Mathematical) Integer Addition

Integer Addition

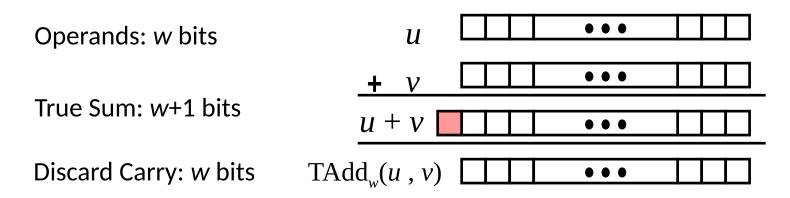
- 4-bit integers *u*, *v*
- Compute true sum Add₄(u, v)
- Values increase linearly with u and v
- Forms planar surface



Visualizing Unsigned Addition

Overflow Wraps Around If true sum $\geq 2^{w}$ $UAdd_4(u, v)$ At most once 16 **True Sum** 14 2^{w+1}T Overflow 12 10 8 -14 2^w 12 6 10 8 V 6 0 **Modular Sum** 4 6 8 10 12U 14

Two's Complement Addition



TAdd and UAdd have Identical Bit-Level Behavior

Multiplication

Goal: Computing Product of *w*-bit numbers *x*, *y*

Either signed or unsigned

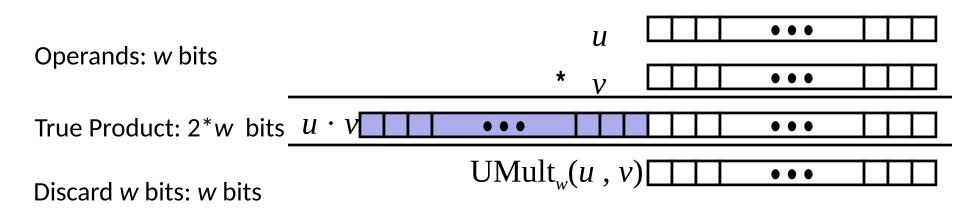
But, exact results can be bigger than w bits

- Unsigned: up to 2w bits
 - Result range: $0 \le x^* y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
- Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2}+2^{w-1}$
- Two's complement max (positive): Up to 2w bits, but only for (TMin_w)²
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$

So, maintaining exact results...

- would need to keep expanding word size with each product computed
- is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C



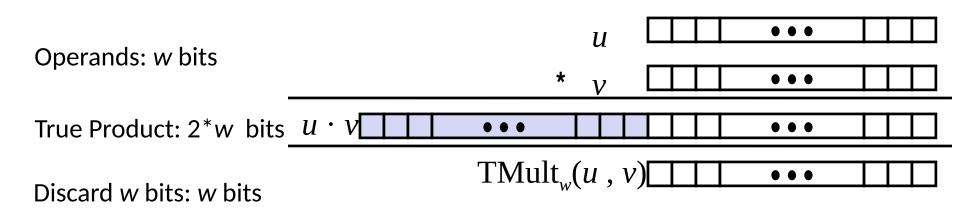
Standard Multiplication Function

Ignores high order w bits

Implements Modular Arithmetic

 $UMult_w(u, v) = u \cdot v \mod 2^w$

Signed Multiplication in C



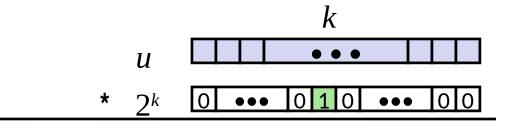
Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

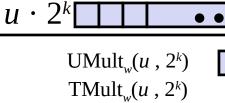
- **u << k** gives **u * 2**^k
- Both signed and unsigned



True Product: <u>w+k</u> bits

Discard k bits: w bits

Operands: w bits



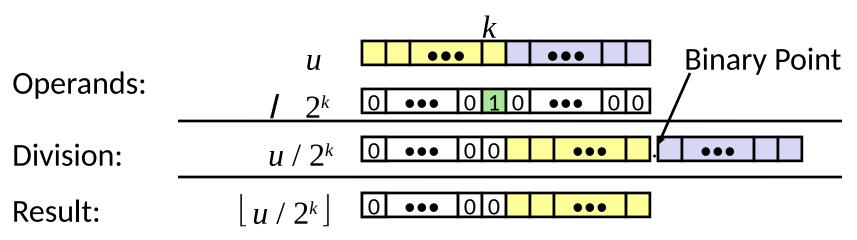
C

Examples

- u << 3 == u * 8
- u << 5) (u << 3) == u * 24 u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} >> \mathbf{k}$ gives $[\mathbf{u} / 2^k]$
 - Uses logical shift



	Division	Computed	Hex	Binary
Х	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

Summary

Representations in memory, pointers, strings

Floating Point

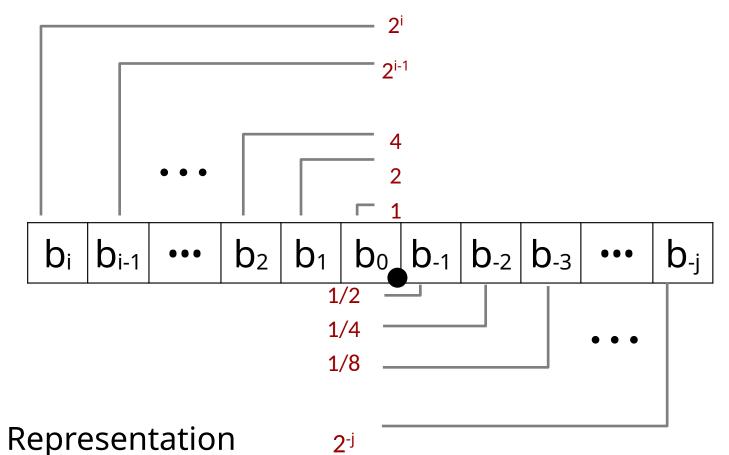
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers



- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value
Representation

- 5 3/4 **101.11**₂
- 27/8 **10.111**₂
- 17/16 **1.0111**₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0 ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

Value	Representation
1 /3	0.01010101[01] ₂
1 /5	0.001100110011[0011] ₂
1/10	0.0001100110011[0011] ₂

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

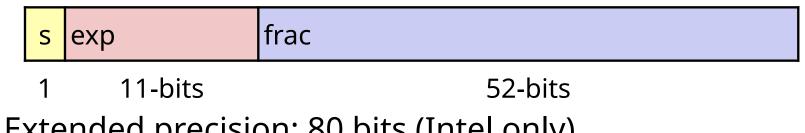
s	exp	frac

Precision options

Single precision: 32 bits

S	exp	frac		
1	8-bits	23-bits		

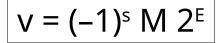
Double precision: 64 bits



Extended precision: 80 bits (Intel only)

S	exp	frac
1	15-bits	63 or 64-bits

"Normalized" Values



- When: exp =/000...0 and exp =/111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

Significand coded with implied leading 1: M = 1.xxx...x₂

- xxx...x: bits of frac field
- Minimum when frac=000...0 (M = 1.0)
- Maximum when frac=111...1 (M = 2.0 ε)
- Get extra leading bit for "free"

Example

Step 1: Convert 9.75 to Binary

9.75 in decimal is represented as:

9 in binary: 1001

0.75 in binary: To convert this, repeatedly multiply by 2 and track the whole number part:

 $0.75 \times 2 = 1.50 \rightarrow \text{whole part} = 1$

 $0.5 \times 2 = 1.00 \rightarrow \text{ whole part} = 1$

So, 0.75 in binary is 0.11.

Thus, 9.75 in binary is:

1001.11 or 1.00111×2^3 (in normalized scientific notation).

Example – contd.

Step 2: Breaking into IEEE 754 Components

Sign bit (S): Since 9.75 is positive, the sign bit is 0.

Exponent (E): The actual exponent here is 3, because we shifted the decimal point three places to the left to normalize the number.

Mantissa (M): The mantissa is the binary digits after the leading 1 (which is implied in IEEE 754). So, the mantissa is 00111.

Step 3: Encode the Exponent with Bias

For IEEE 754 single-precision, the exponent is stored with a bias of 127. So, to store the exponent, we add the bias to the actual exponent:

Encoded Exponent = Actual Exponent + Bias

Encoded Exponent = 3 + 127 = 130

In binary, 130 is represented as: 10000010

Example

Step 4: Assembling the Final IEEE 754 Representation

Now, let's combine the components:

Sign bit: 0

Exponent: 10000010 (which is 130 in decimal)

Mantissa: 001110000000000000000000000 (with 23 bits)

So, the 32-bit IEEE 754 single-precision representation of 9.75 is:

Normalized Encoding Example

 $v = (-1)^{s} M 2^{E}$ E = Exp – Bias

Value: float F = 15213.0;

• $15213_{10} = 11101101101_2$ = 1.1101101101_2 x 2¹³

Significand

М	=	1. <u>1101101101101₂</u>
frac	=	$\underline{1101101101101}000000000_2$

Exponent

Е	=	13		
Bias	=	127		
Exp	=	140	=	10001100 ₂

Result:

Denormalized Values

 $v = (-1)^{s} M 2^{E}$ E = 1 – Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

Condition: exp = **111...1**

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative

• E.g.,
$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -\infty$

Case: exp = 111...1, frac =/000...0

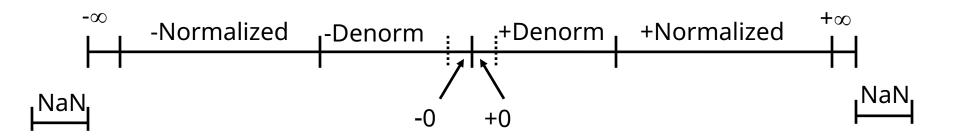
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined

• E.g., sqrt(-1),
$$\infty - \infty$$
, $\infty \times 0$

Normalized vs Denormalized

Number	Туре	IEEE 754 Representation			
6.5	Normalized	0 10000001 1010000000000000000000000000			
1.4 × 10^-45	Denormalized	0 00000000 000000000000000000000000000			

Visualization: Floating Point Encodings



Today: Floating Point

- Background: Fractional binary numbers
 IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

S	ехр	frac
1	4-bits	3-bits

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

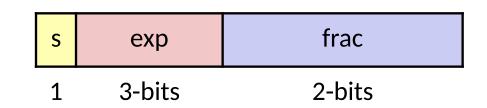
Dynamic Range (Positive Only)-1)^s M 2^E

	S	exp	frac	E	Value			n: E = Exp –
	0	0000	000	-6	0			Bias
	Θ	0000	001	- 6	1/8*1/64	=	1/512	disest to zerojas
Denormalized	0	0000	010	- 6	2/8*1/64	=	2/512	
numbers	••••							
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	-6	7/8*1/64	=	7/512	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/512	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/512	Smanesenorm
	••••							
	0	0110	110	-1	14/8*1/2	=	14/16	
	0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	=	1	
numbers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
	0	0111	010	0	10/8*1	=	10/8	
	•••							
	0	1110	110	7	14/8*128	=	224	
	0	1110	111	7	15/8*128	=	240	largest norm
	0	1111	000	n/a	inf			

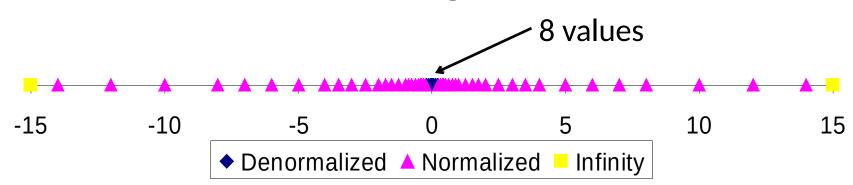
Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 2³⁻¹-1 = 3



Notice how the distribution gets denser toward zero.



Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

	S	exp	frac
_	1	3-bits	2-bits

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

• $x +_f y = \text{Round}(x + y)$

• $x \times_f y = \text{Round}(x \times y)$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	_
\$1.50					
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down (– ∞)	\$1	\$1	\$1	\$2	-\$2
Round up (+ ∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is O
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary Rounde	d	Action Rounde	ed Value
2 3/32	10.00011 ₂	10.00 ₂	(<1/2—down)	2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.10 ₂	(1/2—down)	2 1/2

FP Multiplication

■ (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}

- Exact Result: (-1)^s M 2^E
 - Sign S: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

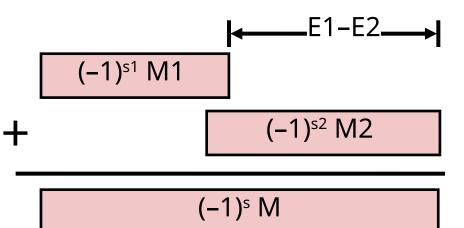
Implementation

Biggest chore is multiplying significands

Floating Point Addition

• $(-1)^{s_1} M1 2^{e_1} + (-1)^{s_2} M2 2^{e_2}$

- Assume E1 > E2
- Exact Result: (-1)^s M 2^E
- Sign S, significand M:
 - Result of signed align & add
- Exponent E: E1



Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if E out of range
- Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? Yes
 - But may generate infinity or NaN
 - Yes Commutative? No
 - Associative?
 - Overflow and inexactness of rounding
 - (3.14+1e10) 1e10 = 0, 3.14 + (1e10 1e10) = 3.14
 - 0 is additive identity?
 - Every element has additive inverse?
 - Yes, except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c?$
 - Except for infinities & NaNs

Yes Almost

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication? Yes But may generate infinity or NaN Yes Multiplication Commutative? Multiplication is Associative? No Possibility of overflow, inexactness of rounding Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20 Yes 1 is multiplicative identity? No Multiplication distributes over addition? Possibility of overflow, inexactness of rounding 1e20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 = NaN Monotonicity Almost • $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$ Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
- float single precision
- double double precision
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- Int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
 - Will round according to rounding mode

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

int x = ...; float f = ...; double d = ...;

Assume neither d nor f is NaN

- x == (int)(float) x
- x == (int)(double) x
- f == (float)(double) f
- d == (double)(float) d

- $d < 0.0 \Rightarrow ((d*2) < 0.0)$
- $d > f \Rightarrow -f > -d$

• (d+f)-d == f

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers