
1

Carnegie Mellon

Introduction to Computer Systems

Instructor:
Susmit Shannigrahi

2

Carnegie Mellon

Overview
 Course theme
 Five realities
 Academic integrity

3

Carnegie MellonCourse Theme:
Abstraction Is Good But Don’t Forget
Reality
 Most CS and CE courses emphasize abstraction

 Abstract data types
 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs
 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently
 Able to understand and tune for program performance

4

Carnegie MellonGreat Reality #1:
Ints are not Integers, Floats are not
Reals Example 1: Is x2 0?≥
 Float’s: Yes!

 Int’s:
 40000 * 40000 1600000000➙
 50000 * 50000 ??➙

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!
 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

5

Carnegie Mellon

Computer Arithmetic
 Does not generate random values

 Arithmetic operations have important mathematical properties
 Cannot assume all “usual” mathematical properties

 Due to finiteness of representations
 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity
 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs
 Observation

 Need to understand which abstractions apply in which contexts
 Important issues for compiler writers and serious application programmers

6

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in

assembly
 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level
execution model
 Behavior of programs in presence of bugs

 High-level language models break down
 Tuning program performance

 Understand optimizations done / not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Compiler has machine code as target
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice!

7

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical
Abstraction

 Memory is not unbounded
 It must be allocated and managed
 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform
 Cache and virtual memory effects can greatly affect program performance
 Adapting program to characteristics of memory system can lead to major

speed improvements

8

Carnegie Mellon

Memory Referencing Bug Example

 Result is system specific

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

typedef struct {
 int a[2];
 double d;
} struct_t;

double fun(int i) {
 volatile struct_t s;
 s.d = 3.14;
 s.a[i] = 1073741824; /* Possibly out of bounds */
 return s.d;
}

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug
Example

typedef struct {
 int a[2];
 double d;
} struct_t;

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

Location accessed by
fun(i)

Explanation:
Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

10

Carnegie Mellon

Memory Referencing Errors
 C and C++ do not provide any memory protection

 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler
 Action at a distance

 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby, Python, ML, …
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors (e.g. Valgrind)

11

Carnegie Mellon

Great Reality #4: There’s more to performance than
asymptotic complexity

 Constant factors matter too!
 And even exact op count does not predict

performance
 Easily see 10:1 performance range depending on how code written
 Must optimize at multiple levels: algorithm, data representations,

procedures, and loops
 Must understand system to optimize performance

 How programs compiled and executed
 How to measure program performance and identify bottlenecks
 How to improve performance without destroying code modularity and

generality

12

Carnegie Mellon

Memory System Performance
Example

 Hierarchical memory organization
 Performance depends on access patterns

 Including how step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

81.8ms4.3ms2.0 GHz Intel Core i7 Haswell

13

Why The Performance Differs

s1
s2
s3
s4
s5
s6
s7
s8
s9
s1
0
s1
1

0

2000

4000

6000

8000

10000

12000

14000

16000

12
8m 32

m 8m
2m

51
2k 12

8k 32
k

Stride (x8 bytes)

R
e

a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Size (bytes)

copyij

copyji

14

Carnegie MellonGreat Reality #5:
Computers do more than execute
programs

 They need to get data in and out
 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes
 Coping with unreliable media
 Cross platform compatibility
 Complex performance issues

15

Carnegie Mellon

Textbooks
 Randal E. Bryant and David R. O’Hallaron,

 Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

 http://csapp.cs.cmu.edu
 This book really matters for the course!

 How to solve labs
 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,
 The C Programming Language, Second Edition, Prentice Hall, 1988
 Still the best book about C, from the originators

	Slide 1
	Overview
	Course Theme: Abstraction Is Good But Don’t Forget Reality
	Great Reality #1: Ints are not Integers, Floats are not Reals
	Computer Arithmetic
	Great Reality #2: You’ve Got to Know Assembly
	Great Reality #3: Memory Matters Random Access Memory Is an Unp
	Memory Referencing Bug Example
	Memory Referencing Bug Example (2)
	Memory Referencing Errors
	Great Reality #4: There’s more to performance than asymptotic c
	Memory System Performance Example
	Why The Performance Differs
	Great Reality #5: Computers do more than execute programs
	Textbooks

