
1

Carnegie Mellon

Introduction to Computer Systems

Instructor:
Susmit Shannigrahi

2

Carnegie Mellon

Overview
 Course theme
 Five realities
 Academic integrity

3

Carnegie MellonCourse Theme:
Abstraction Is Good But Don’t Forget
Reality
 Most CS and CE courses emphasize abstraction

 Abstract data types
 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs
 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently
 Able to understand and tune for program performance

4

Carnegie MellonGreat Reality #1:
Ints are not Integers, Floats are not
Reals Example 1: Is x2 0?≥
 Float’s: Yes!

 Int’s:
 40000 * 40000 1600000000➙
 50000 * 50000 ??➙

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!
 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

5

Carnegie Mellon

Computer Arithmetic
 Does not generate random values

 Arithmetic operations have important mathematical properties
 Cannot assume all “usual” mathematical properties

 Due to finiteness of representations
 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity
 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs
 Observation

 Need to understand which abstractions apply in which contexts
 Important issues for compiler writers and serious application programmers

6

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in

assembly
 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level
execution model
 Behavior of programs in presence of bugs

 High-level language models break down
 Tuning program performance

 Understand optimizations done / not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Compiler has machine code as target
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice!

7

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical
Abstraction

 Memory is not unbounded
 It must be allocated and managed
 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform
 Cache and virtual memory effects can greatly affect program performance
 Adapting program to characteristics of memory system can lead to major

speed improvements

8

Carnegie Mellon

Memory Referencing Bug Example

 Result is system specific

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

typedef struct {
 int a[2];
 double d;
} struct_t;

double fun(int i) {
 volatile struct_t s;
 s.d = 3.14;
 s.a[i] = 1073741824; /* Possibly out of bounds */
 return s.d;
}

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug
Example

typedef struct {
 int a[2];
 double d;
} struct_t;

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

Location accessed by
fun(i)

Explanation:
Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

10

Carnegie Mellon

Memory Referencing Errors
 C and C++ do not provide any memory protection

 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler
 Action at a distance

 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby, Python, ML, …
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors (e.g. Valgrind)

11

Carnegie Mellon

Great Reality #4: There’s more to performance than
asymptotic complexity

 Constant factors matter too!
 And even exact op count does not predict

performance
 Easily see 10:1 performance range depending on how code written
 Must optimize at multiple levels: algorithm, data representations,

procedures, and loops
 Must understand system to optimize performance

 How programs compiled and executed
 How to measure program performance and identify bottlenecks
 How to improve performance without destroying code modularity and

generality

12

Carnegie Mellon

Memory System Performance
Example

 Hierarchical memory organization
 Performance depends on access patterns

 Including how step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

81.8ms4.3ms2.0 GHz Intel Core i7 Haswell

13

Why The Performance Differs

s1
s2
s3
s4
s5
s6
s7
s8
s9
s1
0
s1
1

0

2000

4000

6000

8000

10000

12000

14000

16000

12
8m 32

m 8m
2m

51
2k 12

8k 32
k

Stride (x8 bytes)

R
e

a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Size (bytes)

copyij

copyji

14

Carnegie MellonGreat Reality #5:
Computers do more than execute
programs

 They need to get data in and out
 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes
 Coping with unreliable media
 Cross platform compatibility
 Complex performance issues

15

Carnegie Mellon

Textbooks
 Randal E. Bryant and David R. O’Hallaron,

 Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

 http://csapp.cs.cmu.edu
 This book really matters for the course!

 How to solve labs
 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,
 The C Programming Language, Second Edition, Prentice Hall, 1988
 Still the best book about C, from the originators

	Slide 1
	Overview
	Course Theme: Abstraction Is Good But Don’t Forget Reality
	Great Reality #1: Ints are not Integers, Floats are not Reals
	Computer Arithmetic
	Great Reality #2: You’ve Got to Know Assembly
	Great Reality #3: Memory Matters Random Access Memory Is an Unp
	Memory Referencing Bug Example
	Memory Referencing Bug Example (2)
	Memory Referencing Errors
	Great Reality #4: There’s more to performance than asymptotic c
	Memory System Performance Example
	Why The Performance Differs
	Great Reality #5: Computers do more than execute programs
	Textbooks

