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Overview
 Course theme
 Five realities
 Academic integrity
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Carnegie MellonCourse Theme:
Abstraction Is Good But Don’t Forget 
Reality
 Most CS and CE courses emphasize abstraction

 Abstract data types
 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs
 Need to understand details of underlying implementations

 Useful outcomes 
 Become more effective programmers

 Able to find and eliminate bugs efficiently
 Able to understand and tune for program performance
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Ints are not Integers, Floats are not 
Reals Example 1: Is x2  0?≥
 Float’s: Yes!

 Int’s:
  40000 * 40000   1600000000➙
  50000 * 50000   ??➙

 Example 2: Is (x + y) + z  =  x + (y + z)?
 Unsigned & Signed Int’s: Yes!
 Float’s:

  (1e20 + -1e20) + 3.14 --> 3.14
  1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571
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Computer Arithmetic
 Does not generate random values

 Arithmetic operations have important mathematical properties
 Cannot assume all “usual” mathematical properties

 Due to finiteness of representations
 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity
 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs
 Observation

 Need to understand which abstractions apply in which contexts
 Important issues for compiler writers and serious application programmers
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Great Reality #2: 
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in 

assembly
 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level 
execution model
 Behavior of programs in presence of bugs

 High-level language models break down
 Tuning program performance

 Understand optimizations done / not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Compiler has machine code as target
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice!
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Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical 
Abstraction

 Memory is not unbounded
 It must be allocated and managed
 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform
 Cache and virtual memory effects can greatly affect program performance
 Adapting program to characteristics of memory system can lead to major 

speed improvements
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Memory Referencing Bug Example

 Result is system specific

fun(0)  ➙ 3.14
fun(1)  ➙ 3.14
fun(2)  ➙ 3.1399998664856
fun(3)  ➙ 2.00000061035156
fun(4)  ➙ 3.14
fun(6)  ➙ Segmentation fault

typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824; /* Possibly out of bounds */
  return s.d;
}
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Memory Referencing Bug 
Example

typedef struct {
  int a[2];
  double d;
} struct_t;

fun(0)  ➙ 3.14
fun(1)  ➙ 3.14
fun(2)  ➙ 3.1399998664856
fun(3)  ➙ 2.00000061035156
fun(4)  ➙ 3.14
fun(6)  ➙ Segmentation fault

Location accessed by 
fun(i)

Explanation:
Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t
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Memory Referencing Errors
 C and C++ do not provide any memory protection

 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler
 Action at a distance

 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby, Python, ML, …
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors (e.g. Valgrind)
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Great Reality #4: There’s more to performance than 
asymptotic complexity

 Constant factors matter too!
 And even exact op count does not predict 

performance
 Easily see 10:1 performance range depending on how code written
 Must optimize at multiple levels: algorithm, data representations, 

procedures, and loops
 Must understand system to optimize performance

 How programs compiled and executed
 How to measure program performance and identify bottlenecks
 How to improve performance without destroying code modularity and 

generality
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Memory System Performance 
Example

 Hierarchical memory organization
 Performance depends on access patterns

 Including how step through multi-dimensional array

void copyji(int src[2048][2048],
            int dst[2048][2048])
{
  int i,j;
  for (j = 0; j < 2048; j++)
    for (i = 0; i < 2048; i++)
      dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
            int dst[2048][2048])
{
  int i,j;
  for (i = 0; i < 2048; i++)
    for (j = 0; j < 2048; j++)
      dst[i][j] = src[i][j];
}

81.8ms4.3ms2.0 GHz Intel Core i7 Haswell
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Why The Performance Differs
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Carnegie MellonGreat Reality #5:
Computers do more than execute 
programs

 They need to get data in and out
 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes
 Coping with unreliable media
 Cross platform compatibility
 Complex performance issues
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Textbooks
 Randal E. Bryant and David R. O’Hallaron, 

 Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e), 
Pearson, 2016

 http://csapp.cs.cmu.edu
 This book really matters for the course!

 How to solve labs
 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie, 
 The C Programming Language, Second Edition, Prentice Hall, 1988
 Still the best book about C, from the originators
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