CSC4200/5200 – COMPUTER NETWORKING

RELIABLE DELIVERY – PART 1

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

Frames – bag of bits

Sending side – encapsulation, add error check bits, flow control
Receiving side – extract frames, check for error, flow control

Two (2.5) Steps to a Link

• Create a physical medium between nodes (wire, fiber, air!)

• Make it carry bits

- Encoding bits so that the other end understands (encoding)
- Create bag of bits to create messages (framing)
- Detect errors in frames (error detection)
- Deal with lost frames (reliable delivery)
- Create shared access to link, e.g, WiFi (media access)

Reliable Delivery

- Frames might get lost
 - Too many bits lost
 - Clock did not sync properly
 - Error detected but the report got lost
- Can we build links that does not have errors?
 - Not possible
- How about all those error correction stuff we learned?
 - Can we add them to frames?
 - We could, but think of the overhead
 - What happens when the entire frame is lost?

Frames – bag of bits

Sending side – encapsulation, add error check bits, flow control
Receiving side – extract frames, check for error, flow control

Stop and Wait

- Sender sends a frame, sets a timeout (e.g., 1 sec)
- Receiver receives the frame,
- sends an ACK
- Sender
 - sends the next frame on ACK
 - retransmits the same frame if timeout happens
- Spot the bugs in the protocol

Stop and Wait – Bugs (C and D)

Stop and Wait – How to fix the bug?

Hint: Uniquely identify each packet

1 bit sequence number - 0 or 1

Alternate between 0 and

Stop and Wait v2

Stop and Wait - V2 Problems

- Sender sets a timeout to wait for an ACK
 - Too small retransmissions
 - Too large long wait if frames are lost
- Solution:
 - Keep a running average of Round Trip Till
 - EstimatedRTT = $(1 \alpha) \cdot \text{EstimatedRTT} + \alpha \cdot \text{SampleRT}$
 - Timeout = 2*EstimatedRTT
 - Value of α = 0.125
 - Where does α come from? RFC 6928 (for now)

11

Time

Stop and Wait – How to fix the bug?

Hint: Uniquely identify each packet

Stop and Wait – How does it perform?

- Bandwidth (R)= 1Gbps
- Packet size (L) = 1000 bytes
- RTT = 30ms
- T_{trans} = L/R = 8000bits/10⁹bits/sec = 8microsecond
- $\bullet T_{prop} = 15ms$
- Total Delay = 15.008 ms

a. A stop-and-wait protocol in operation

13

Stop and Wait – How does it perform?

- Sender transmits for only 0.008 ms in 30.008ms
- Utilization = 0.008/30.008 = 0.00027
- One bit at a time
- Worse when loss happens!

Kurose/Ros s

Sliding window to the rescue!

Utilization = 0.008*3/30.008 = 0.00079 (3 times increase)

Sliding window to the rescue!

Utilization = 0.008*3/30.008 = 0.00079 (3 times increase)

Sliding window – How does this work?

Sliding Window - Selective Repeat

- Receiver:
 - Individually acks all packets
 - Buffers packets as necessary
 - Buffer packets until lost packets are received
- Sender:
 - Resend packets (only) for which ACK not received
 - Timer for each unACKed packet
 - Can send only n packets

http://www.exa.unicen.edu.ar/catedras/c omdat1/material/Filminas3_Practico3.sw f

Sliding window -Selective Repeat

Sliding window -Selective Repeat

Sliding window -Selective Repeat - LOSS

Sender:

- Data received, if next to-be-sentpacket's seq # within window, send. Else, buffer or return to application.
- Timeout: Each packet has its own timer. resend the packet
- ACK received: Mark received, Advance window to next unacked seq # if ack for send_base

- Receiver, packet (n)
 - Sequence between recev_base, recv_base + N - 1, send ack (n)
 - Out of order: buffer
 - In-order or closes gap deliver to application
 - Packet within <recv_base-N, recv_base -1>, ACK(n)
 - Otherwise: Ignore

Issues with Sliding Window Protocol

- When timeout occurs, the amount of data in transit decreases
 - Since the sender is unable to advance its window
- When the packet loss occurs, this scheme is no longer keeping the pipe full
 - The longer it takes to notice that a packet loss has occurred, the more severe the problem becomes
- How to improve this
 - Negative Acknowledgement (NAK)
 - Additional Acknowledgement
 - Selective Acknowledgement (SAK)

- Reading Material:
 - Chapter 2.5
 - <u>https://en.wikipedia.org/wiki/Go-Back-N_ARQ</u>
 - 5 minutes