CSC4200/5200 – COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

INTERNET PROTOCOL (IP) sshannigrahi@tntech.edu

Bits (1010001)

Exam

- Sept 28th
 - . If you have a conflict, let me know NOW!
 - Location iLearn
- Open book but you may not have time to look things up.
- Only from the book and lecture notes, no programming questions

So far...

- We are forwarding packets between different LANs
- Spanning tree algorithm for preventing loops

Connects two or more LAN segments - Bridging

How do we create a spanning tree?

. Message (Y, d, X) - (to, distance, from)

- 4 thinks it's the root
- Sends (4, 0, 4) to 3 and 5
- Receives (3,0,3) from 3
 - Sets it to as the root since 3 < 4
- Receives (3,1,5) from 5
 - Sees that this is a longer path to 3
 - 2 hops vs direct path (1 hop)
 - . Removes 4-5 link from the tree
- Does not scale!

ATM (Carries Cells, not Money)

- ATM (Asynchronous Transfer Mode)
 - Connection-oriented packet-switched network
- Packets are called cells
- 5 byte header + 48 byte payload
- Fixed length packets are easier to switch in hardware
- . Why?

ATM (Carries Cells, not Money)

- ATM (Asynchronous Transfer Mode)
 - Connection-oriented packet-switched net\
 - Packets are called cells
 - 5 byte header + 48 byte payload
- Fixed length packets are easier to switch in hardware
 - Simpler to design
 - Enables parallelism
- Still used in long distance private links

kurose/ross

IP Suite – From the First Lecture

Network Topology

Data Flow

wikipedia

Internet Protocol (IP)

• What is an internetwork?

• An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service

But that's what switches are for – No?

• Switches create networks, Routers connect different networks.

11

- Typically switches are at Layer 2, Routers are at Layer 3
- Switches forward FRAMES, Routers forward PACKETS

But that's what switches are for – No?

- This room → Point-to-point link
- This room + next room \rightarrow Switch
- This room + next room + foundation hall → Switches with VLAN
- This university + Internet \rightarrow Router
- . Good for conceptualization not always as simple

Every device has a MAC – Why do we need another address?

- Ethernet (MAC) addresses are flat
- Not the only link layer
- Not related to network topology
 - Remember we are still connecting to hosts!
 - How do we go from: 52:54:00:86:38:14 to thtech?

. Other reasons?

Apps (HTTP)
Transport (TCP/UDP)
Network (IP Address)
Link (MAC Address)

Global Address in IP – Each node has an unique address

- A 32 bit number in quad-dot notation
- . Identifies an Interface
 - . A host might have several interfaces!!!
- 129.82.138.254
 1000001.01010010.10001010.1111110
 (a) 7 24
 (b) 14 16

14

Host

8

Network

21

Network

1

(c)

0

1

0

IP allows the network to scale!

• What if addresses were arbitrary?

.

Solution - Group hosts

• What if addresses were arbitrary?

.

IP addresses are in Network + Host

- 1.1.2.1 →
 - . 1.1 → Network part
 - 2.1 \rightarrow host part
- Each octet can range from 1-255
- Hierarchical address

129.82.138.254

1000001.01010010.10001010.1111110

Network part (24 bits). Host part(8 bits)

How do we know host vs network → Subnetting

129.82.138.254 (Address)

255.255.255.0 (Subnet mask)

Subnetting

Forwarding Table at Router R1

SubnetNumber	SubnetMask	NextHop	
128.96.34.0	255.255.255.128	Interface 0	
128.96.34.128	255.255.255.128	Interface 1	
128.96.33.0	255.255.255.0	R2	

Subnetting

Three classes: Class A: 129.0.0.0/8 Class B: 129.82.0.0/16 Class C: 129.82.2.0/14

SubnetNumber	SubnetMask	NextHop	
128.96.34.0	255.255.255.128	Interface 0	
128.96.34.128	255.255.255.128	Interface 1	
128.96.33.0	255.255.255.0	R2	

Well, not really!

- CIDR: Classless Interdomain routing
- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address
 - 129.82.13.0/23

SubnetNumber	SubnetMask	NextHop	
128.96.34.0	255.255.255.128	Interface 0	
128.96.34.128	255.255.255.128	Interface 1	
128.96.33.0	255.255.255.0	R2	

Now routers can operate on Network address!!!!

Address management is localized

Address management can be automated

You have an address – Send data now. IP service model

- Packet Delivery Model
 - Connectionless model for data delivery
- Best-effort delivery (unreliable service)
 - packets are lost
 - packets are delivered out of order
 - duplicate copies of a packet are delivered
 - packets can be delayed for a long time
- Global Addressing Scheme
 - Provides a way to identify all hosts in the network

IP Packet

4	8 1	6 19	9 3 [.]				
HLen	TOS	Length					
Ident			Offset				
TTL	Protocol	Checksum					
SourceAddr							
DestinationAddr							
Options (variable)							
Data							
\sim	\sim	\sim	\sim				
×							
	n HLen Ident	n HLen TOS Ident TTL Protocol Source Destina Options (variable	n HLen TOS Flags Ident Flags TTL Protocol Con SourceAddr DestinationAddr				

Version (4): 4

Hlen (4): number of 32-bit words in header

TOS (8): type of service (not widely used)

Length (16): number of bytes in this datagram

Ident (16): used by fragmentation

Flags/Offset (16): used by fragmentation

TTL (8): number of hops this datagram has traveled

Protocol (8): demux key (TCP=6, UDP=17)

Checksum (16): of the header only

DestAddr & SrcAddr (32)

Underlying Layer 2 limitations

- Ethernet 1500
- PPP 512
- Break packets into smaller chunk and reassemble later

The second fragmentation

Underlying Layer 2 limitations

- Ethernet 1500
- PPP 512
- Break packets into smaller chunk and reassemble later

Reading Assignments

Internetworking: CHAPTER 3.1

Basic Internetworking: Chapter 3.2