CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi INTERNET PROTOCOL (IP) sshannigrahi@tntech.edu

Bits (1010001)

Exam

- Sept 28th
. If you have a conflict, let me know NOW!
- Location - iLearn
- Open book - but you may not have time to look things up.
- Only from the book and lecture notes, no programming questions

So far...

- We are forwarding packets between different LANs
. Spanning tree algorithm for preventing loops

Switching

- Switch
- A mechanism to interconnect
- links to form a large network
- Forward frames

- Connects two or more LAN segments - Bridging

How do we create a spanning tree?

. Message (Y, d, X) - (to, distance, from)
. 4 thinks it's the root

- Sends $(4,0,4)$ to 3 and 5
- Receives $(3,0,3)$ from 3
. Sets it to as the root since $3<4$
- Receives $(3,1,5)$ from 5
. Sees that this is a longer path to 3
- 2 hops vs direct path (1 hop)
- Removes 4-5 link from the tree

. Does not scale!

ATM (Carries Cells, not Money)

- ATM (Asynchronous Transfer Mode)
- Connection-oriented packet-switched network
- Packets are called cells
. 5 byte header +48 byte payload
- Fixed length packets are easier to switch in hardware
. Why?

ATM (Carries Cells, not Money)

- ATM (Asynchronous Transfer Mode)
- Connection-oriented packet-switched netı
- Packets are called cells
. 5 byte header +48 byte payload
- Fixed length packets are easier to switch in hardware
- Simpler to design
- Enables parallelism

. Still used in long distance private links

IP Suite - From the First Lecture

Network Topology

Data Flow

wikipedia

Internet Protocol (IP)

. What is an internetwork?

- An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service

But that's what switches are for - No?

. Switches create networks, Routers connect different networks.

- Typically switches are at Layer 2, Routers are at Layer 3
- Switches forward FRAMES, Routers forward PACKETS


```
Apps (HTTP)
```

Transport (TCP/UDP)

Network (IP)

Link
(Ethernet)

But that's what switches are for - No?

. This room \rightarrow Point-to-point link
. This room + next room \rightarrow Switch

- This room + next room + foundation hall \rightarrow Switches with VLAN
- This university + Internet \rightarrow Router
. Good for conceptualization - not always as simple

Every device has a MAC - Why do we need another address?

. Ethernet (MAC) addresses are flat
. Not the only link layer

- Not related to network topology

Transport
(TCP/UDP)

- Remember - we are still connecting to hosts!
. How do we go from: 52:54:00:86:38:14 to tntech?
. Other reasons?

Global Address in IP - Each node has an unique address

- A 32 bit number in quad-dot notation
- Identifies an Interface
. A host might have several interfaces!!!
- 129.82.138.254
10000001.01010010 .10001010 .17777710

(b)

	14	16	
1	0	Network	Host

(c)

	21			8
1	1	0	Network	Host

IP allows the network to scale!

-What if addresses were arbitrary?

Solution - Group hosts

-What if addresses were arbitrary?
1.1.2.1 5.1.6.7
1.1.2.2

IP addresses are in Network + Host

. 1.1.2.1 \rightarrow

- $1.1 \rightarrow$ Network part
- 2.1 - host part
- Each octet can range from 1-255
- Hierarchical address
129.82.138.254
10000001.01010010 .10001010 .11111110

Network part (24 bits). Host part(8 bits)

How do we know host vs network \rightarrow Subnetting

129.82.138.254 (Address)
10000001.01010010.10001010.11111110
11111111.11111111.11111111.00000000
255.255.255.0 (Subnet mask)
1.1.2.1 5.1.6.7

Subnetting

Forwarding Table at Router R1

SubnetNumber	SubnetMask	NextHop
128.96 .34 .0	255.255 .255 .128	Interface 0
128.96 .34 .128	255.255 .255 .128	Interface 1
128.96 .33 .0	255.255 .255 .0	R2

Subnetting

Three classes:
Class A: 129.0.0.0/8
Class B: 129.82.0.0/16
Class C: 129.82.2.0/14

SubnetNumber	SubnetMask	NextHop
128.96 .34 .0	255.255 .255 .128	Interface 0
128.96 .34 .128	255.255 .255 .128	Interface 1
128.96 .33 .0	255.255 .255 .0	R2

Well, not really!

. CIDR: Classless Interdomain routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is \# bits in subnet portion of address

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

. 129.82.13.0/23

Now routers can operate on Network address!!!!

129.82.138.252
149.149.2.254
129.82.138.254 (Address)
129.82.138.253
10000001.01010010.10001010.11111110
11111111.11111111.11111111.00000000
255.255.255.0 (Subnet mask)
129.82.138.254 + 255.255.255.0 \rightarrow 129.82.138.0/24

Address management is localized

No coordination needed for adding 129.82.138.251

No routing update needs to go out
129.82.138.25

Address management can be automated

ARP:
Map IP address to MAC address DHCP:

Learn IP address, gateway, DNS

More on these later.

You have an address - Send data now. IP service model

- Packet Delivery Model
. Connectionless model for data delivery
- Best-effort delivery (unreliable service)
- packets are lost
- packets are delivered out of order
- duplicate copies of a packet are delivered
- packets can be delayed for a long time
- Global Addressing Scheme
. Provides a way to identify all hosts in the network

IP Packet

Version (4): 4

Hlen (4): number of 32-bit words in header
TOS (8): type of service (not widely used)
Length (16): number of bytes in this datagram
Ident (16): used by fragmentation
Flags/Offset (16): used by fragmentation
TTL (8): number of hops this datagram has traveled
Protocol (8): demux key (TCP=6, UDP=17)
Checksum (16): of the header only
DestAddr \& SrcAddr (32)

IP Fragmentation and Reassembly

Underlying Layer 2 limitations

- Ethernet 1500
- PPP 512
- Break packets into smaller chunk and reassemble later

IP Fragmentation and Reassembly

IP Fragmentation and Reassembly

IP Fragmentation and Reassembly

Underlying Layer 2 limitations

- Ethernet 1500
- PPP 512
- Break packets into smaller chunk and reassemble later

Reading Assignments

Internetworking:
CHAPTER 3.1

Basic Internetworking:
Chapter 3.2

