
CSC4200/5200 – COMPUTER NETWORKING

NETWORKED APPLICATIONS

Instructor: Susmit Shannigrahi

sshannigrahi@tntech.edu

mailto:sshannigrahi@tntech.edu

2

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

3

How do you send the cat picture?

● Write your own cat picture transfer app
● In an email
● Upload to a webserver and download using FTP
● Upload to dropbox/AWS/Google cloud
● Use a bit-torrent like protocol
● Use a CDN
● And many other ways….

https://xkcd.com/949/

4

Creating a network app

write programs that:
● run on (different) end systems
● communicate over network
● e.g., web server software

communicates with browser software

no need to write software for network-
core devices

● network-core devices do not run user
applications

● applications on end systems allows
for rapid app development,
propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

5

Creating a network app

write programs that:
● run on (different) end systems
● communicate over network
● e.g., web server software

communicates with browser software

no need to write software for network-
core devices

● network-core devices do not run user
applications

● applications on end systems allows
for rapid app development,
propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

6

Application architectures

possible structure of applications:
● client-server
● peer-to-peer (P2P)

7

Client-server architecture

server:
● always-on host
● permanent IP address
● data centers for scaling

clients:
● communicate with server
● may be intermittently connected
● may have dynamic IP addresses
● do not communicate directly

with each other

client/server

8

P2P architecture

● no always-on server
● arbitrary end systems directly

communicate

● Services between peers
– self scalability

● peers are intermittently
connected and change IP
addresses
– complex management

peer-peer

9

Example of each?

Client server ?

P2P?

10

Sockets

● process sends/receives messages to/from its socket
● socket analogous to door

– sending process shoves message out door
– sending process relies on transport infrastructure on other side of door to

deliver message to socket at receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

11

App-layer protocol defines

● types of messages exchanged,
– e.g., request, response

● message syntax:
– what fields in messages & how

fields are delineated
● message semantics

– meaning of information in
fields

● rules for when and how
processes send & respond to
messages

open protocols:
● defined in RFCs
● allows for interoperability
● e.g., HTTP, SMTP

proprietary protocols:
● e.g., Skype

12

What transport service does an app need?

data integrity
● some apps (e.g., file transfer, web

transactions) require 100% reliable
data transfer

timing
● some apps require low delay

to be “effective”

throughput
 some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

security
 encryption, data
integrity, …

13

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

14

Securing Data - Application Layer Function

TCP & UDP
● no encryption
● cleartext passwds sent

into socket traverse
Internet in cleartext

SSL
● provides encrypted TCP

connection
● data integrity
● end-point authentication

SSL is at app layer
● Apps use SSL libraries,

which “talk” to TCP
SSL socket API
 cleartext passwds sent

into socket traverse
Internet encrypted

 More on this later.

15

Web and HTTP

● web page consists of objects
● object can be HTML file, JPEG image, Java

applet, audio file,…
● web page consists of base HTML-file which

includes several referenced objects
● each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

16

Web vs Internet?

http://info.cern.ch/
http://info.cern.ch/hypertext/WWW/TheProject.html

17

HTTP overview

HTTP - hypertext transfer
protocol

● Web’s application layer
protocol

● client/server model
– client: browser that

requests, receives, (using
HTTP protocol) and
“displays” Web objects

– server: Web server sends
(using HTTP protocol)
objects in response to
requests

PC running
Firefox browser

server
running

Apache Web
server

iphone running
Safari browser

18

HTTP overview (continued)

uses TCP:
● client initiates TCP connection

(creates socket) to server, port
80

● server accepts TCP connection
from client

● HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

● TCP connection closed

HTTP is “stateless”
● server maintains no

information about
past client requests

● Applications may
make it almost
“stateful”

19

HTTP connections (Remember it uses
TCP)

non-persistent HTTP
● at most one object sent

over TCP connection
– connection then

closed
● downloading multiple

objects required
multiple connections

persistent HTTP
● multiple objects can be

sent over single TCP
connection between
client, server

20

HTTP request message

● two types of HTTP messages: request, response
● HTTP request message:

– ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

21

HTTP response message
status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
data data data data data ...

22

HTTP response status codes

200 OK
– request succeeded, requested object later in this msg

301 Moved Permanently
– requested object moved, new location specified later in this msg (Location:)

400 Bad Request
– request msg not understood by server

404 Not Found
– requested document not found on this server

505 HTTP Version Not Supported

 status code appears in 1st line in server-to-client response
message.

 some sample codes:

23

Cookies: keeping “state”

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678 ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

24

HTTP 1 vs 2

https://blog.cloudflare.com/the-road-to-quic/

25

HTTP 2 Head-of-the-line Blocking

https://blog.cloudflare.com/the-road-to-quic/

Shared connection = Shared loss

26

QUIC

https://blog.cloudflare.com/the-road-to-quic/

27

QUIC is Quick(er)

https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html

28

HTTP 2/TCP vs HTTP 3/QUIC

https://eng.uber.com/employing-quic-protocol/

1. Faster connection establishment
2. No HoL blocking
3. Multiplexing connections with ability to differentiate
4. Connection migration

29

Next Steps

Reading Assignment:
HTTP: Chapter 9.1.2

30

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Apps (HTTP)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)
Ethernet Interface Ethernet Interface

Segments

Data

Packets

Frames

Bits (1010001)

	Slide 1
	Slide 2
	Slide 3
	Creating a network app
	Slide 5
	Application architectures
	Client-server architecture
	P2P architecture
	Slide 9
	Sockets
	App-layer protocol defines
	What transport service does an app need?
	Transport service requirements: common apps
	Securing TCP
	Web and HTTP
	Slide 16
	HTTP overview
	HTTP overview (continued)
	HTTP connections
	HTTP request message
	HTTP response message
	HTTP response status codes
	Cookies: keeping “state” (cont.)
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

