
Software Defined 
Networking (SDN)

PRESENTED BY: LUKE LAMBERT



Outline
Research Hypothesis

Overview of SDNs [3, 6]

OpenFlow [1]

Programming Protocol-Independent Packet Processors (P4) [2]

OpenFlow Security Vulnerabilities & other Shortcomings [4,5,6]

Comparing Virtualization in Legacy Networks and SDN [3]

Revisiting my Research Hypothesis



Research Hypothesis
“SDN gives researchers a practical method of experimentation with 
new network protocols in realistic settings”



Software Defined Networking 
(SDN) 
What is the problem?
Legacy network platforms do not have built-in flexibility, 

automation, programmability, and support to test and implement 
new networking ideas without interrupting ongoing services

Why should we care?
New ideas go untried & untested
Network infrastructure has stagnated
High barrier to entry for developers



What is an SDN? [3, 6]
SDN is an emerging network architecture where network control is 
decoupled from forwarding devices and is directly programmable



SDN Architecture [3, 6]



OpenFlow [1]
Protocol used for managing the southbound interface of the generalized 
SDN architecture

First standard interface defined to facilitate interaction between the control 
and data planes of the SDN architecture
“OpenFlow defines initial concept of SDN and SDN governs future 

development of OpenFlow” [3]

Provides software-based access to the flow tables that instruct switches and 
routers how to direct network traffic

Provides management tools to control topology changes and packet filtering



OpenFlow – What is a flow?
A TCP connection 

All packets from a particular MAC address or IP address

All packets with the same VLAN tag

All packets arriving from the same switch port



OpenFlow Switches
Consists of:
A flow table
A secure channel connecting the switch to the controller
The OpenFlow protocol

Switches can be categorized into:
Dedicated OpenFlow Switches
OpenFlow-enabled Switches



Dedicated OpenFlow Switches
Dumb datapath elements that forwards packets between ports 
according to the controller

Three basic actions:
Forward flow’s packets to a given port
Encapsulate and forward flow’s packet to a controller
Drop flow’s packet



OpenFlow-enabled Switches
Commercial switches, routers, and access points

Support 3 basic actions

Enhanced with:
Flow table
Secure channel
OpenFlow Protocol

OpenFlow-enabled switches must isolate experimental traffic from production traffic 
Two main ways to do this:
Add a fourth action: forward a flow’s packets through the switch’s normal processing 

pipeline
Separate sets of VLANs into experimental and production traffic



Flow Table
An entry in the flow table has three fields:
A packet header
The action
Statistics

First generation “Type 0” switch flow header:



OpenFlow Controller
Central control point that oversees a variety of OpenFlow-enabled 
network components

Adds/removes flow-entries from the flow table 

Two implementations:
Static Controller
Can be considered a generalization of VLANs

Dynamic Controller
Add/remove flows as experiment progresses
Can support multiple researchers



Simple OpenFlow Example
I invent a new routing protocol and want to try it in a network of OpenFlow switches without altering end-
point software

My protocol will run on a controller

Each time a new application flow starts, my protocol picks a route through the OpenFlow switches and 
adds a new flow entry in each switch along the path

I want to use my own desktop PC to run my protocol
Define one flow to be all traffic entering OpenFlow switch through the switch port my PC is connected to
Add flow entry with action: “Encapsulate and forward all packets to a controller”

Each time a new application flow starts (packets reach the controller), my protocol:
Chooses a route through a series of OpenFlow switches
Adds a flow-entry in each switch along the path
Subsequent packets are processed quickly by the Flow Table



OpenFlow – Other Applications
Network Access Control
Check flow against a set of rules

VLANs
Static flows

Mobile wireless VOIP clients

Supporting a non-IP network
Flows identified using their Ethernet header
A new EtherType value
New IP version number

Processing packets rather than flows
Force all packets to flow through a controller
Route packets to a programmable switch



OpenFlow – Improving the Match 
Rule Flexibility
The first version of OpenFlow matched only 12 fields and grew 
more complicated from there



Motivation for Programming 
Protocol-Independent Packet 
Processors (P4) [2]
[2] argues that future switches should support flexible, programmable mechanisms for 
parsing packets and matching header fields (OpenFlow 2.0)

Recent chips can be flexible but the code is not portable

There is need for a high-level language for Programming Protocol Independent Packet 
Processors (P4)
Raises network abstraction
Can serve as a general interface between a controller and switches
Three goals:
Reconfigurability
Protocol Independence
Target Independence



P4 - Abstract Switch Forwarding 
Model
Generalizes how packets are processed in different forwarding devices 
by different technologies

Controlled by two types of operations or phases:
Configure
Program the parser
Set order of match+action stages
Specify header fields

Populate
Adds/removes entries to the match+action table (flow table)



P4 - Abstract Switch Forwarding 
Model
Arriving packets handled by parser
Parser recognizes and extracts fields from header
Extracted header fields passed to match+action tables

Match+action tables are divided between ingress and egress packets
Both may modify packet header
Ingress match+action determines the egress port and queue
Based on ingress processing, a packet may be forwarded, replicated, or dropped
Egress match+action performs per-instance packet header modifications 

Action tables may be associated with a flow to track frame-to-frame state



P4 – Programming Language
Main goal of paper

A packet processing language must allow the programmer to express any serial 
dependencies between header fields

Dependencies can be identified by analyzing Table Dependency Graphs (TDGs)
TDGs describe the field inputs, actions, and control flow between tables
TDG nodes map directly to match+action tables
Dependency analysis shows where each table may reside 

Programmers express packet processing programs using P4

Compiler translates P4 representation to TDGs and maps TDGs to specific 
switch targets



P4 – Example TDG



P4 Concepts
Headers

Describes sequence and structure of a series of fields
Specifies field widths and constraints

Parsers
Specifies how to identify headers and valid header sequences within packets

Tables
P4 defines fields on which the table may match and what action it will take

Actions
P4 supports construction of complex actions from simpler protocol-independent primitives

Control Programs
Determines order of match+action tables that are applied to a packet



P4 Example
Consider an example L2 network deployment with top-of-rack (ToR) 
switches at the edge connected by a two-tier core

Assume the number of end-hosts are growing and the core L2 
tables are overflowing

We want to implement a new protocol, mTag



P4 Example – Header Formats
Headers are specified by declaring an ordered list of field names 
together with their widths

Optional field annotations may be added to specify constraints on 
value ranges or maximum lengths for variable-sized fields



P4 Example – Header Formats
The mTag header can be added without altering existing 
declarations

Field names indicate two layers of aggregation

Switches programmed with rules to examine one of these bytes



P4 Example – The Packet Parser
P4 assumes the underlying switches are capable of creating a state machine that 
traverses packet headers from start to finish

State machine = set of transitions from one header to the next

Each transition may be triggered by values in the current header

Parsing starts in the start state and proceeds until:
A stop state is reached
An unhandled case is encountered

Upon reaching a state for a new header, the state machine extracts the header and 
identifies the next transition

Extracted headers are forwarded to match+action processing



P4 Example – The Packet Parser



P4 Example – Table Specification
Next, the programmer must describe how defined headers should be 
matched and what actions should be performed when a match occurs

The table specification allows a compiler to decide how much 
memory it needs and  the memory type

Several attributes are used:
reads which fields to match and the match type
actions lists the possible actions which can be applied to a packet by 

the table
max_size describes how many entries the table should support



P4 Example – Table Specification



P4 Example – Table Specification



P4 Example – Action 
Specification
P4 defines a set of primitive actions from which more complicated 
actions can be built

Each P4 program declares a set of action functions, composed of 
action primitives
Used to simplify table specification and population

P4 assumes parallel execution of action primitives within an action 
function



P4 Example – Action 
Specification
P4’s primitive actions include:
set_field: Set a specified field in a header to a value
copy_field: Copy one field to another
add_header: Set a specific header instance (and all its fields) as 

valid
remove_header: Delete a header (and all its fields) from a packet
increment: increment or decrement a value in a field
checksum: calculate a checksum over some set of header fields 

(ex. An IPv4 checksum)



P4 Example – Action 
Specification



P4 Example – The Control 
Program
After tables and actions are defined, the only remaining task is to 
specify the flow of control from one table to the next
Control Flow is specified as a program via a collection of functions, 

conditionals, and table references



P4 Example – The Control 
Program



Compiling a P4 Program
The control flow is a convenient way to specify the logical 
forwarding behavior of a switch, but does not explicitly call out 
dependencies between tables or opportunities for concurrency

Therefore, P4 employs a compiler that analyzes the control 
program to identify dependencies and look for opportunities to 
process header fields in parallel

The compiler also generates the target configuration for the switch



Compiling a P4 Program
A two step compilation process is used:
First, the P4 control program is converted into a intermediate 

table dependency graph, which is analyzed to determine 
dependencies between tables 

Then, a target-specific back-end maps this graph onto a switch’s 
specific resources



OpenFlow Security 
Vulnerabilities [4][5]
The original OpenFlow specification required the control channel 
between the controller and switches to be protected using Transport 
Layer Security (TLS)

Unfortunately, as of v1.3.0, TLS is made optional and many vendors 
to not follow the recommendation
“The switch and controller may communicate through a TLS 

connection”

The lack of TLS leaves an avenue to infiltrate OpenFlow networks 
and remain undetected



OpenFlow Security 
Vulnerabilities [4][5]
Man-in-the-Middle Attacks
Easier to perform in an OpenFlow network
An attacker in traditional network must wait for an operator to 

log into each switch management interface with an insecure 
protocol

However, constant connectivity and lack of authentication in 
plaintext OpenFlow controller enables:
Attacker to seize full control any down-stream switches
Fine-grained eavesdropping attacks



OpenFlow Security 
Vulnerabilities [4, 5]
Listener Mode
Many switches support “Listener Mode”
Unauthenticated connections to a configured TCP port accepted from any 

network source
Allows external connections to write rules to switches and read information for 

debugging
Eliminates need for a Man-in-the-middle attack
By discovering a switch with a passive listening port, an attacker may
Insert rules to hijack downstream switches
Capture traffic
Configure switch as proxy for future attacks



OpenFlow Security 
Vulnerabilities [4, 5]
Switch Authentication
Even with TLS, failure to implement switch authentication in the 

controller allows attackers to perform network reconnaissance
Observe how the controller responds to different packets



OpenFlow Security 
Vulnerabilities [4, 5]
Flow Table Verification
Even with TLS, switches that erroneously alter rules would not be caught
Controller cannot keep track of all switch flow-table state changes
Mismatch between controller’s idea of rule-states and actual rule states
Access-control failure
Network outage
Other unexpected behavior

Only way to verify is by dumping and inspecting flow tables for each switch
Computationally expensive for both controller and switches



OpenFlow Security 
Vulnerabilities [4, 5]
Denial of Service Risks
Centralizing the controller creates a new point of failure
Mitigated with multiple controllers
Without careful rule design, controllers can be exposed to DoS
Majority of risks impact networks that use reactive rules
Networks with proactive rules still vulnerable from excessive controller 

flow modifications
OpenFlow 1.3 suggests policing packets destined to controller

OpenFlow leaves burden of implementing complex security on application 
developers, who may be unfamiliar with possible attacks



OpenFlow Security 
Vulnerabilities [4, 5]
Controller Vulnerabilities
OpenFlow applications are capable of deep packet inspection and 

conversation reconstruction on the controller
Application isolation in OpenFlow is an integral part of network 

security
Without it, compromising a single application could lead to 

adversarial control of the network 



Other Shortcomings with SDN 
[6]
Reliability
Centralized controller = single point of failure

Scalability
NOX – 30,000 requests/s

Lack of standard APIs
No open-source OpenFlow driver
No standard north-bound API
No standard high level programming language



Comparing Virtualization in 
Legacy Networks and SDN [6]

But first, what is the difference between VLAN and Network Virtualization (NV)?
While VLAN allows a physical network to be broken into multiple virtual networks, it lacks any fine 

grained control
On the other hand, NV allows the creation of entire networks in software

So, what are the difference between SDN and NV?
SDN = software interacting with hardware, NV = software replicating hardware
SDN decouples the control from forwarding devices, decouples and isolates virtual networks from 

the underlying network hardware
SDN requires modifying switches/routers, while NV can reside on the servers of an existing network
SDN allows configuration of all virtual networks from a controller, while NVs using virtual tunnels 

and tags can require tedious configuration

While there are many differences, both can facilitate virtualization with control



Comparing Virtualization in 
Legacy Networks and SDN [6]



Revisiting my Research 
Hypothesis
“SDN gives researchers a practical method of experimentation with new 
network protocols in realistic settings”
Overall, yes
OpenFlow provides the basic infrastructure
P4 simplifies OpenFlow programming and improves match rule flexibility 
OpenFlow has acceptable vulnerabilities if TLS implemented properly

However, 
Use-case restricted to campus setting 
Widespread adoption of strong protocol security is needed to expand 

OpenFlow use cases



References
[1] N. McKeown, et al. “OpenFlow: enabling innovation in campus networks.” ACM SIGCOMM 
Computer Communication Review, 2008

[2] Pat Bosshart et. al., P4: programming protocol-independent packet processors. SIGCOMM 
Computer Communication Reviews, 2014

[3] Xia, Wenfeng, et al. "A survey on software-defined networking." IEEE Communications Surveys 
& Tutorials 17.1 (2014): 27-51.

[4] Shaghaghi, Arash, et al. "Software-defined network (SDN) data plane security: issues, solutions, 
and future directions." Handbook of Computer Networks and Cyber Security (2020): 341-387.

[5] Benton, Kevin, L. Jean Camp, and Chris Small. "OpenFlow vulnerability assessment." Proceedings 
of the second ACM SIGCOMM workshop on Hot topics in software defined networking. 2013.

[6] Jammal, Manar, et al. "Software defined networking: State of the art and research challenges." 
Computer Networks 72 (2014): 74-98.


	Slide 1
	Outline
	Research Hypothesis
	Software Defined Networking (SDN)
	What is an SDN? [3, 6]
	SDN Architecture [3, 6]
	OpenFlow [1]
	OpenFlow – What is a flow?
	OpenFlow Switches
	Dedicated OpenFlow Switches
	OpenFlow-enabled Switches
	Flow Table
	OpenFlow Controller
	Simple OpenFlow Example
	OpenFlow – Other Applications
	OpenFlow – Improving the Match Rule Flexibility
	Slide 17
	P4 - Abstract Switch Forwarding Model
	P4 - Abstract Switch Forwarding Model
	P4 – Programming Language
	P4 – Example TDG
	P4 Concepts
	P4 Example
	P4 Example – Header Formats
	P4 Example – Header Formats
	P4 Example – The Packet Parser
	P4 Example – The Packet Parser
	P4 Example – Table Specification
	P4 Example – Table Specification
	P4 Example – Table Specification
	P4 Example – Action Specification
	P4 Example – Action Specification
	P4 Example – Action Specification
	P4 Example – The Control Program
	P4 Example – The Control Program
	Compiling a P4 Program
	Compiling a P4 Program
	OpenFlow Security Vulnerabilities [4][5]
	OpenFlow Security Vulnerabilities [4][5]
	OpenFlow Security Vulnerabilities [4, 5]
	OpenFlow Security Vulnerabilities [4, 5]
	OpenFlow Security Vulnerabilities [4, 5]
	OpenFlow Security Vulnerabilities [4, 5]
	OpenFlow Security Vulnerabilities [4, 5]
	Other Shortcomings with SDN [6]
	Comparing Virtualization in Legacy Networks and SDN [6]
	Comparing Virtualization in Legacy Networks and SDN [6]
	Revisiting my Research Hypothesis
	References

