9/8/21 - Domain Name System Max Layer

CSC-6730 Advanced Networking

Research Question

- "Is Internet routing undermining DNS anycast benefits?"
 - DNS
 - Design goals
 - Architecture
 - Anycast
 - Internet routing
 - BGP
 - Tie it together
 - DNS Anycast
 - Performance
 - Problems
 - Impact of internet routing
 - Undermining?
 - Why? Why not?

Ancient Times: A Pre-DNS World

- ARPANET
- HOSTS.TXT
 - o 1.2.3.4 name
- A lot more hosts...
- Aside: Still a backup!

Design of DNS

- Design Assumptions: [1]
 - At least same information as HOSTS.TXT
 - Ability to maintain distributed database
 - No obvious data size limits
 - Connect as many environments as possible
 - Tolerable performance

Design of DNS

- Derivative Constraints: [1]
 - Only worth it if extensible
 - Independent from network topology
 - Encapsulate other name spaces
 - Avoid forcing architectures on users
 - Allow users to customize implementation

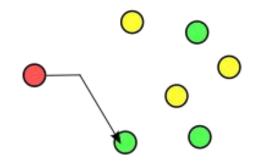
DNS Architecture

- 2 Main Components
 - Name Servers
 - Resolvers
- Name space
 - Tree
 - Nodes
 - Label
 - Data

Example: csc.tntech.edu

Design of DNS - Success?

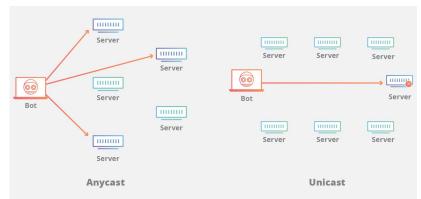
- Design Assumptions:
 - At least same information as HOSTS.TXT
 - Ability to maintain distributed database
 - No obvious data size limits
 - Connect as many environments as possible
 - Tolerable performance
- Derivative Constraints:
 - Only worth it if extensible
 - Independent from network topology
 - Encapsulate other name spaces
 - Avoid forcing architectures on users
 - Allow users to customize implementation


DNS Performance

- Room for improvement
- What if you want:
 - Load Balancing
 - DDoS Protection
 - Low Latency
- More name servers, more localized
 - Expensive
 - Time Consuming

What is Anycast?

- One *IP*, many *hosts*
 - How is this different from DNS?
 - DNS: One *name*, many *IPs*
 - Who decides?
 - DNS Resolver VS ISP/BGP
- BGP: Border Gateway Protocol
 - Route between Autonomous Systems
 - Typically, shortest routes
 - TL;DR: ISP level routing
 - More next week!



Anycast Visualization [6]

Why Use Anycast?

- Duplicate service, different geographic location
 - Redundancy
 - Latency
 - 'Free' load balancing/DDoS resiliency
 - Cheaper!
- What does this sound perfect for?

Anycast DDoS Protection [5]

Who Uses Anycast?

- Content Delivery Networks
- Root DNS Servers
 - The original CDN
 - CDN for HOSTS.TXT
 - DNS Anycast
 - Same IP address
 - Different locations
 - Ex: 1.1.1.1

Anycast Visualization [6]

Using Anycast For Your CDN

- All you need to do:
 - Have the same endpoints you would have anyways
 - Endpoints share the same IP
 - Instead of same domain name
 - \circ \quad Hope the user's request goes to the best one
 - Wait, what?

Anycast CDN Performance [2]

- Anycast-based CDN
- Measure Performance
 - Passively (Logs)
 - Actively
 - Automatically query for random frontends
 - One via anycast
 - Three via unicast
 - Record the latency of requests

Anycast CDN Performance [2]

- Results:
 - ~20% of clients get suboptimal frontend
 - Persistently poor performance (over time)
 - Front end affinity

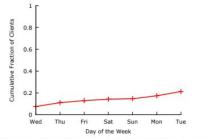


Figure 7: The cumulative fraction of clients that have changed frontends at least once by different points in a week

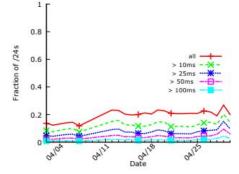


Figure 5: Daily poor-path prevalence during April 2015 showing what fraction of client /24s see different levels of latency improvement over anycast when directed to their best performing unicast front-end.

[2]

Anycast Problems

- Lack of control
 - Free load balancing, but to where?
 - Reliance on internet routing
- BGP doesn't guarantee "best" path
 - Review: End to end argument
 - Application layer VS network layer error correction
 - Lower layer had enough information to solve the problem
 - Most of the time
 - BGP advertisement path *length*
 - Least path changes =/= fastest route
 - Highways
 - Big geographical leaps happen often
 - What if the shortest path is to an overloaded endpoint?

Improving Anycast Performance [2]

- BGP lacks information to make best decisions
- More Information inside of BGP
 - Advertise more data on each AS
 - Geography?
 - Load?
 - More information allows more accurate decisions to be made
- Hybrid anycast and DNS-based redirection
 - Use DNS for clients with poorer anycast performance
 - Predict better frontends for clients using DNS information
 - EDNS Prediction based on client's prefix
 - LDNS Local DNS maps latency, chooses its best frontend

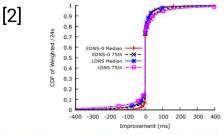
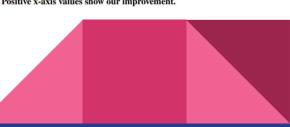



Figure 9: Improvement over anycast from making LDNS or ECS-based decisions with prediction using 25th percentile prediction metric. Negative x-axis values show where anycast was better than our prediction. Values at 0 show when we predicted anycast was the best performing. Positive x-axis values show our improvement.

Research Question

- "Is Internet routing undermining DNS anycast benefits?"
 - **YES...** to a degree
 - Internet routing (BGP) typically prioritizes least amount of network hops
 - Not necessarily fastest route (Undermines latency)
 - Not necessarily least busy route (Undermines load balancing)
- Is Internet routing undermining *all* DNS anycast benefits?
 - **NO**
 - Still cheaper than managing load balancing DNS servers
 - Most of the time it works as intended
 - Reasonable trade off?
 - Used because it's good enough

Questions?

References:

- [1] P. Mockapetris, K. Dunlap, "Development of Domain Name System", ACM SIGCOMM Computer Communication Review, 1988
- [2] Matt Calder, et. al. 2015. Analyzing the Performance of an Anycast CDN. IMC 2015
- [3] Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee. 2018. Internet anycast: performance, problems, & potential. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication (SIGCOMM '18)
- [4] L. Colitti, E. Romijn, H. Uijterwaal, and A. Robachevsky. Evaluating the effects of anycast on DNS root name servers. In RIPE document RIPE-393, 2006
- [5] <u>https://www.cloudflare.com/learning/dns/what-is-anycast-dns/</u>
- [6] https://en.wikipedia.org/wiki/File:Anycast-BM.svg