CSC6730 – Advanced Networking - Introduction

Susmit Shannigrahi

sshannigrahi AT tntech.edu

August 23, 2021

Susmit Shannigrahi (sshannigrahi AT tntech.e

August 23, 2021

- Course outline
- Critical Reviews
- Presentation
- List of papers
- Grading

Learn to do Research

Thinking with a research mindset and communicate effectively.

In broad strokes we will cover the following topics:

- The design rationale of the Internet and how it has evolved.
- Look at the state-of-the-art research landscape in networking
- Identify and present design choices
 - Why things were designed the way they are?
 - What are the trade-offs? Where do things break?
- Identify shortcomings of the current design and future directions
 - This can be your future thesis/dissertation!!

Research Areas

• Fundamental and Next-generation protocols

- Design decisions of the Internet
- Domain name systems
- Border Gateway Protocol
- Software Defined Networking
- Named Data Networking
- Networked Applications
 - Content Delivery Networks (CDNs)
 - Next Generation Protocols for CDNs
 - Next Generation Protocols for Internet of Things (IoT)
 - Networking for the Cloud
 - Networking for the Edge
- Network Security
 - DDoS
 - Next Generation Networks for network security
 - Next Generation Networks for Vehicular Networks

- Critical reviews 40%
- Presentation 30%
- Class participation 20%

This class is awesome :)

No midterm or Final!

90 or above = "A" Below 90 = Based on relative score distribution

- 2 Pages, 11 point, Single Spaced. See the overleaf template on the website.
- You don't need to defend the paper
- 0.5 page Summary of the paper
 - Don't copy and paste from the abstract
 - Summarize your own understanding not the authors' words

1.5 pages critical review

- You don't need to defend the paper
- Criticize it see where things don't work
- Construct scenarios where things will break
- What are the possible inefficiencies in their approach?
- In your opinion, how can we address those inefficiencies?
- What are the future research questions left unanswered?
- How would you extend the work?

- You will turn in 8 critical reviews.
- Approximately one every two weeks.
- You can choose which ones you want to write.

Review Template

- You will present a topic, not a paper
- You will form a research question
- You will use 4 papers to support or refute your research question
- 2 papers are supplied, you will find two more papers
- You will meet with me regularly to work on your papers and presentation

- Construct a hypothesis from the papers
- In which scenarios do these solutions work?
- Where do they break?
- Your presentation needs to tell a story

Example Hypothesis

I think DNS based server redirection mechanisms do not work well for current Content Delivery Networks.

Break the hypothesis into smaller components:

- How does DNS redirection mechanisms is currently applied to a CDN? Mostly anycast
- Hmm, what does it mean to not "not work"? Large latency? No lookup? Define the problem space.
- When do they work well? Define the solution space! When we need 40ms latency for 80% of the traffic.
- Where does it break? Find out the problems with Anycast. (If your IP-Name mapping is broken, DNS cache injection, topology changes, routing changes, bad mapping, availability and so on)

Example Hypothesis

DNS based server redirection mechanisms do not work well for current Content Delivery Networks.

 Okay - so you establish DNS redirection does not work. How would you fix it?

- Why does it not work? Find the reasons.
- How do you create a new mechanism to address those problems?
- Does that solve everything? What new problems does this introduce?

Think of this as mini thesis/dissertation defense -

- We will post your critical review on the website.
- Make sure you practice your presentation!!!
- Make sure you meet with me to discuss your presentation.

Valid question

Your solution does not seem to take care of TTL expiration problem. How would you address that shortcoming?

Invalid question

Anycast works for Akamai - why do I need to listen to your presentation?

- Each student is expected to ask a question.
- Let the presenter know your perspective why are you asking this question.
- Think why you are asking this question maybe you want to learn more, maybe you disagree with the hypothesis.

- At the end of each class we will have a survey:
 - Three things that you understood
 - Three things that were not clear
- We will discuss those in the next class

How to Read Papers?

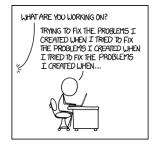


Figure: Caption

• Read a few papers about reading papers

- ► How to read a paper
- Efficient Reading of Papers in Science and Technology

イロト イボト イヨト イヨ

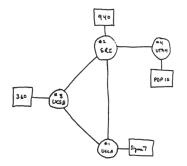
With the right proportion of inspiration and panic - you can do this!

4 A b

- Why the Internet was designed the way it was designed?
- How this design has evolved over time?
- Is the current design is sufficient today?

- Why the Internet was designed the way it was designed?
- How this design has evolved over time?
- Is the current design is sufficient today?

First Network - Telephones



- Communication between 2 points: a caller (source) and a listener(destination)
- Communication identifier: telephone number
- Established circuit between source and destination
- Highly reliable, but slow
- Take-away point: "Dumb" terminals, "smart" networks

- Constant bit rate 64 Kbps
- Reliable
- Error recovery?
- Tight delay constraints (100-200ms)
- How do we send pictures?

- US military project through Defense Advanced Research Project Agency (DARPA –at that time ARPA)
- Outcome ARPANET
- Enable robust communication even if links are broken
- Opened to the universities in the 1980s

Early Days of the Internet

THE ARPA NETWORK

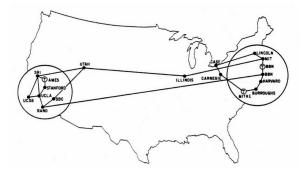

4 NODES

FIGURE 6.2 Drawing of 4 Node Network (Courtesy of Alex McKenzie)

臣

イロト イボト イヨト イヨト

Early Days of the Internet

• 1970, ARPANET hosts start using NCP; first two cross-country lines (BBN-UCLA and MIT-Utah)

- 1961 Packet switching
- 1971 15 nodes (23 hosts): UCLA, SRI, UCSB, Univ of Utah, BBN, MIT, RAND, SDC, Harvard, Lincoln Lab, Stanford, UIU(C), CWRU, CMU, NASA/Ames on ARPANET
- 1974 Telnet , TCP design
- 1984 DNS
- 1986 NSFNET created (backbone speed of 56Kbps)
- 1993 InterNIC (directory, information services)
- 1995 Commercial Internet
- Then things explode...

In order of importance:

- Inter-connect existing networks (ARPANET, packet radio, satellite, etc.)
- Survivability (ensure communication when router and link failures happen)
- Support different types of services/applications
- Must accommodate a variety of networks
- Permit distributed management of resources
- Be cost effective
- Permit host attachment with low levels of effort
- Resources used must be accountable

Different ordering of the previous goals may have resulted in a different architectural design

Fundamentally different design compared to telephony! Needed to serve MANY different applications

Traffic can be bursty, many different protocols.

Best-effort delivery no quality of service

2 fundamental design principles - Layering and End-to-end principle